
Solutions to Theoretical Question 1

Gravitational Red Shift and the Measurement of Stellar Mass

(a)

If a photon has an effective inertial mass m determined by its energy then mc2 = hf or m =
hf

c2
.

Now, assume that gravitational mass = inertial mass, and consider a photon of energy hf (mass

m =
hf

c2
) emitted upwards at a distance r from the centre of the star. It will lose energy on escape

from the gravitational field of the star.

Apply the principle of conservation of energy:

Change in photon energy (hfi − hff ) = change in gravitational energy, where subscript i →
initial state and subscript f → final state.

hfi − hff = −GMmf

∞ −
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−GMmi

r

]
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r
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GM hfi

c2

r
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ff
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=
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f
=
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The negative sign shows red-shift, i.e. a decrease in f , and an increase in wavelength.
Thus, for a photon emitted from the surface of a star of radius R, we have

∆f

f
=

GM

Rc2

Since the change in photon energy is small, (δf ¿ f),

mf ' mi =
hfi

c2
.

(b)
The change in photon energy in ascending from ri to rf is given by

hfi − hff = −GMmf

rf
+

GMmi

ri

' GMhfi

c2

[

1
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− 1
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]

∴

ff

fi
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c2
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In the experiment, R is the radius of the star, d is the distance from the surface of the star to the
spacecraft and the above equation becomes:

ff

fi
= 1 − GM

c2

[

1

R
− 1

R + d

]

(1)

The frequency of the photon must be doppler shifted back from ff to fi in order to cause resonance
excitation of the He+ ions in the spacecraft.
Thus apply the relativistic Doppler principle to obtain:

f ′

ff
=

√

1 + β

1 − β



where f ′ is the frequency as received by He+ ions in the spacecraft, and β = v/c.
That is, the gravitationally reduced frequency ff has been increased to f ′ because of the velocity
of the ions on the spacecraft towards the star. Since β ¿ 1,

ff

f ′
= (1 − β)

1

2 (1 + β)−
1

2 ' 1 − β

Alternatively, since β ¿ 1, use the classical Doppler effect directly.
Thus

f ′ =
ff

1 − β

or
ff

f ′
= 1 − β

Since f ′ must be equal to fi for resonance absorption, we have

ff

fi
= 1 − β (2)

Substitution of 2 into 1 gives

β =
GM

c2

(

1

R
− 1

R + d

)

(3)

Given the experimental data, we look for an effective graphical solution. That is, we require a linear
equation linking the experimental data in β and d.
Rewrite equation 3:

β =
GM

c2

[

R\ + d − R\
(R + d)R

]

Inverting the equation gives:
1

β
=

(

Rc2

GM

)[

R

d
+ 1

]

or

1

β
=

(

R2c2

GM

)

1

d
+

Rc2

GM
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The
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β
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= α (B)

and the
1

d
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R
(C)



R and M can be conveniently determined from (A) and (B). Equation (C) is redundant. However,
it may be used as an (inaccurate) check if needed.
From the given data:

R = 1.11 × 108 m

M = 5.2 × 1030 kg

From the graph, the slope αR = 3.2 × 1012 m (A)

The
1

β
-intercept α =

Rc2

GM
= 0.29 × 105 (B)

Dividing (A) by (B)

R =
3.2 × 1012 m

0.29 × 105
' 1.104 × 108 m

Substituting this value of R back into (B) gives:

M =
Rc2

gα
=

(1.104 × 108) × (3.0 × 108)2

(6.7 × 10−11) × (0.29 ×1 05)

or M = 5.11 × 1030 kg

(c)

(i)

Atom before the decay Atom and photon after the decay

+ hf

m m0 0
’

For the photon, photon momentum is p =
hf

c
and photon energy is E = hf .

Use the mass-energy equivalence, E = mc2, to relate the internal energy change of the atom
to the rest-mass change. Thus:

∆E = (m0 = m′
0) c2 (1)

In the laboratory frame of reference the energy before emission is

E = m0c
2 (2)

Recalling the relativistic relation
E2 = p2c2 + m2

0c
4

The energy after emission of a photon is

E =
√

p2c2 + m′
0
2c4 + hf (3)

where also p = hf/c by conservation of momentum.
Conservation of energy requires that (2) = (3), so that:

(

m0c
2 − hf

)2
= (hf)2 + m2

0c
4

(

m0c
2
)2 − 2hfm0c

2 = m2
0c

4

Carrying out the algebra and using equation (1):

hf(2m0c
2) = (m2

0 − m′
0
2)c4

= (m0 − m′
0)c

2(m0 + m′
0)c

2

= ∆E[2m0 − (m0 − m′
0)]c

2

= ∆E[2m0c
2 − ∆E]



hf = ∆E

[

1 − ∆E

2m0c2

]

(ii)
For the emitted photon,

hf = ∆E

[

1 − ∆E

2m0c2

]

.

If relativistic effects are ignored, then

hf0 = ∆E .

Hence the relativistic frequency shift
∆f

f0

is given by

∆f

f0

=
∆E

2m0c2

For He+ transition (n = 2 → 1), applying Bohr theory to the hydrogen-like helium ion gives:

∆E = 13.6 × 22 ×
[

1

12
− 1

22

]

= 40.8 ev

Also, m0c
2 = 3.752 × 106 eV. Therefore the frequency shift due to the recoil gives

∆f

f0

' 5.44 × 10−12

This is very small compared to the gravitational red-shift of
∆f

f
∼ 10−5, and may be ignored

in the gravitational red-shift experiment.



Solutions to Theoretical Question 2

(a)
Snell’s Law may be expressed as

sin θ

sin θ0

=
c

c0

, (1)

where c is the speed of sound.
Consider some element of ray path ds and treat this as, locally, an arc of a circle of radius R.
Note that R may take up any value between 0 and ∞. Consider a ray component which is initially
directed upward from S.

dz

dθR

Rds

θ

In the diagram, ds = Rdθ, or
ds

dθ
= R.

From equation (1), for a small change in speed dc,

cos θdθ =
sin θ0

c0

dc

For the upwardly directed ray c = c0 + bz so dc = bdz and

sin θ0

c0

b dz = cos θdθ , hence dz =
c0

sin θ0

1

b
cos θ dθ .

We may also write (here treating ds as straight) dz = ds cos θ. So

ds =
c0

sin θ0

1

b
dθ

Hence
ds

dθ
= R =

c0

sin θ0

1

b
.

This result strictly applies to the small arc segments ds. Note that from equation (1), however, it
also applies for all θ, i.e. for all points along the trajectory, which therefore forms an arc of a circle
with radius R until the ray enters the region z < 0.

(b)

0θ
0θ

z= 0

z    z=

0θ

R sinR

S



Here

zs = R − R sin θ0

= R(1 − sin θ0)

=
c0

b sin θ0

(1 − sin θ0) ,

from which

θ0 = sin−1

[

c0

bzs + c0

]

.

(c)

0θ

x= 0

x=
R

S

R

H
X

The simplest pathway between S and H is a single arc of a circle passing through S and H. For
this pathway:

X = 2R cos θ0 =
2c0 cos θ0

b sin θ0

=
2c0

b
cot θ0 .

Hence

cot θ0 =
bX

2c0

.

The next possibility consists of two circular arcs linked as shown.

x= 0 x= X
S H

For this pathway:
X

2
= 2R cos θ0 =

2c0

b
cot θ0 .

i.e.

cot θ0 =
bX

4c0

.

In general, for values of θ0 < π
2
, rays emerging from S will reach H in n arcs for launch angles given

by

θ0 = cot−1

[

bX

2nc0

]

= tan−1

[

2nc0

bX

]

where n = 1, 2, 3, 4, . . .
Note that when n = ∞, θ0 = π

2
as expected for the axial ray.

(d)
With the values cited, the four smallest values of launch angle are

n θ0 (degrees)

1 86.19
2 88.09
3 88.73
4 89.04



(e)
The ray path associated with the smallest launch angle consists of a single arc as shown:

1
2

3

S H

We seek
∫ 3

1

dt =

∫ 3

1

ds

c

Try first:

t12 =

∫ 2

1

ds

c
=

∫ π/2

θ0

Rdθ

c

Using

R =
c

b sin θ

gives

t12 =
1

b

∫ π/2

θ0

dθ

sin θ

so that

t12 =
1

b

[

ln tan
θ

2

]π/2

θ0

= −1

b
ln tan

θ0

2

Noting that t13 = 2t12 gives

t13 = −2

b
ln tan

θ0

2
.

For the specified b, this gives a transit time for the smallest value of launch angle cited in the answer
to part (d), of

t13 = 6.6546 s

The axial ray will have travel time given by

t =
X

c0

For the conditions given,
t13 = 6.6666 s

thus this axial ray travels slower than the example cited for n = 1, thus the n = 1 ray will arrive
first.



Solutions to Theoretical Question 3

(a)
The mass of the rod is given equal to the mass of the cylinder M which itself is πa2ld. Thus the
total mass equals 2M = 2πa2ld. The mass of the displaced water is surely less than πa2lρ (when
the buoy is on the verge of sinking). Using Archimedes’ principle, we may at the very least expect
that

2πa2ld < πa2lρ or d < ρ/2

In fact, with the floating angle α (< π) as drawn, the volume of displaced water is obtained by
geometry:

α α
a a

2a

V = la2α − la2 sin α cos α .

By Archimedes’ principle, the mass of the buoy equals the mass of displaced water. Therefore,
2πa2ld = la2ρ(α − sin α cos α), i.e. α is determined by the relation

α − sin α cosα = 2dπ/ρ .

(b)
If the cylinder is depressed a small distance z vertically from equilibrium, the nett upward restoring
force is the weight of the extra water displaced or gρ.2a sin α.lz, directed oppositely to z. This is
characteristic of simple harmonic motion and hence the Newtonian equation of motion of the buoy
is (upon taking account of the extra factor 1/3)

z

a 2   sin α

8Mz̈/3 = −2ρglza sin α or z̈ +
3ρg sin α

4πda
z = 0 ,

and this is the standard sinusoidal oscillator equation (like a simple pendulum). The solution is of
the type z = sin(ωzt), with the angular frequency

ωz =

√

3ρg sin α

4πda
=

√

3g sin α

2a(α − cosα sin α)
,

where we have used the relation worked out at the end of the first part.



(c)

Without regard to the torque and only paying heed to vertical forces, if the buoy is swung by some
angle so that its weight is supported by the nett pressure of the water outside, the volume of water
displaced is the same as in equilibrium. Thus the centre of buoyancy remains at the same distance
from the centre of the cylinder. Consequently we deduce that the buoyancy arc is an arc of a circle
centred at the middle of the cylinder. In other words, the metacentre M of the swinging motion is

just the centre of the cylinder. In fact the question assumes this.

We should also notice that the centre of mass G of the buoy is at the point where the rod touches the
cylinder, since the masses of rod and cylinder each equal M . Of course the cylinder will experience
a nett torque when the rod is inclined to the vertical. To find the period of swing, we first need to
determine the moment of inertia of the solid cylinder about the central axis; this is just like a disc
about the centre. Thus if M is the cylinder mass

2Mg

2Mg
θ

G

M

I0 = Ma2/2

(

=

∫ a

0

r2 dm =

∫ a

0

r2.2Mr dr/a

)

The next step is to find the moment of inertia of the rod about its middle,

Irod =

∫ a

−a

(Mdx/2a).x2 = [Mx3/6a]a−a = Ma2/3 .

Finally, use the parallel axis theorem to find the moment of inertia of the buoy (cylinder + rod)
about the metacentre M ,

IM = Ma2/2 + [Ma2/3 + M(2a)2] = 29Ma2/6 .

(In this part we are neglecting the small horizontal motion of the bentre of mass; the water is the
only agent which can supply this force!) When the buoy swings by an angle θ about equilibrium the
restoring torque is 2Mga sin θ ' 2Mgaθ for small angles, which represents simple harmonic motion
(like simple pendulum). Therefore the Newtonian rotational equation of motion is

IM θ̈ ' −2Mgaθ , or θ̈ +
12g

29a
= 0 .

The solution is a sinusoidal function, θ ∝ sin(ωθt), with angular frequency

ωθ =
√

12g/29a .

(d)

The accelerometer measurements give

Tθ/Tz ' 1.5 or (ωz/ωθ)
2 ' 9/4 ' 2.25 . Hence



2.25 =
3g sin α

2a(α − sinα cos α)

29a

12g
,

producing the (transcendental) equation

α − sin α cos α ' 1.61 sin α .

Since 1.61 is not far from 1.57 we have discovered that a physically acceptable solution is α ' π/2,
which was to be shown. (In fact a more accurate solution to the above transcendental equation
can be found numerically to be α = 1.591.) Setting alpha = π/2 hereafter, to simplify the algebra,
ω2

z = 3g/πa and 4d/ρ = 1 to a good approximation. Since the vertical period is 1.0 sec,

1.0 = (2π/ωz)
2 = 4π3a/3g ,

giving the radius a = 3 × 9.8/4π3 = .237 m.

We can now work out the mass of the buoy (in SI units),

2M = 2πa2ld = 2πa2.a.ρ/4 = πa3ρ/2 = π × 500 × (.237)3 ' 20.9 kg .



Solutions to Original Theoretical Question 3

(a)
Choose a frame where z is along the normal to the mirror and the light rays define the x–z plane.
For convenience, recording the energy-momentum in the four-vector form, (px, py, pz, E/c), the
initial photon has

Pi = (p sin θi, 0, p cos θi, p)

where p = Ei/c = hfi/c.

u

f f

θθi r

i r

By the given Lorentz transformation rules, in the moving mirror frame the energy-momentum of
the incident photon reads

Pmirror =

(

p sin θi, 0,
p cos θi − up/c
√

1 − u2/c2
,
p − up cos θi/c
√

1 − u2/c2

)

.

Assuming the collision is elastic in that frame, the reflected photon has energy-momentum,

P ′
mirror =

(

p sin θi, 0,
−p cos θi + up/c
√

1 − u2/c2
,
p − up cos θi/c
√

1 − u2/c2

)

.

Tansforming back to the original frame, we find that the reflected photon has

pxr = p sin θi , pyr = 0

pzr =
(−p cos θi + up/c) + u(p − up cos θi/c)/c

1 − u2/c2

Er/c =
(p − up cos θi/c) + u(−p cos θi + up/c)/c

1 − u2/c2

Simplifying these expressions, the energy-momentum of the reflected photon in the original frame
is

Pr =

(

p sin θi, 0,
p(− cos θi + 2u/c − u2 cos θi/c

2)

1 − u2/c2
,
p(1 − 2u cos θi/c + u2/c2)

1 − u2/c2

)

.

Hence the angle of reflection θr is given by

tan θr = −pxr

pzr
=

sin θi(1 − u2/c2)

cos θi − 2u/c + u2 cos θi/c2
=

tan θi(1 − u2/c2)

1 + u2/c2 − 2u sec θi/c2
,

while the ratio of reflected frequency fr to incident frequency fi is simply the energy ratio,

fr

fi
=

Er

Ei
=

1 − 2u cos θi/c + u2/c2

1 − u2/c2
.

[For future use we may record the changes to first order in u/c:

tan θr ' tan θi(1 + 2u sec θi/c) so

tan(θr − θi) =
tan θr − tan θi

1 + tan θr tan θi
' 2u tan θi sec θi/c

1 + tan2 θi
' 2u sin θi

c

Thus, θr ' θi + 2u sin θi/c and fr = fi(1 − 2u cos θi/c).]



(b)

a

b

b secθ

θ
θ

Hereafter define θi = θ. Provided that b/ cos θ < a the laser light will reflect off the mirror, so
cos θ > b/a is needed for photon energy-momentum to be imparted to the mirror. Let us then
define a critical angle α via cos α = b/a.

The change in the normal component ∆p‖ of the momentum of a single photon is

∆L =
∆p‖b

cos θ
=

b

cos θ

[

p cos θ − p(− cos θ + 2u/c − u2 cos θ/c2)

1 + u2/c2

]

,

∆L =
bp(2 cos θ − 2u/c)

cos θ(1 + u2/c2)
=

2bp(1 − u sec θ/c)

(1 + u2/c2)
' 2bp(1 − u sec θ/c) .

Since u cos θ = ωb, ∆L ' 2bp(1 − ωb sec2 θ/c) per photon. Suppose N photons strike every second
(and |θ| is less than the critical angle α). Then in time dt we have Ndt photons. But dt = dθ/ω,
so in this time we have,

dL = N
dθ

ω
× 2bp

(

ωb

c
sec2 θ

)

Thus the change in ∆L per revolution is

dL

dn
= 2 × 2bpN

ω

∫ a

−a

(1 − ωb sec2 θ/c) dθ

where n refers to the number of revolutions. So

dL

dn
' 8bpN

ω

(

α − ωb

c
tan α

)

=
8bP

ωc

(

α − ωb

c
tan α

)

,

since each photon has energy pc and laser power equals P = Npc.
Clearly ωb ¿ c always, so dL/dn ' 8bPα/ωc; thus

dL

dt
=

dL

dn

dn

dt
=

ω

2π

dL

dn
=

4bPα

πc
.

(c)

Therefore if I is the moment of inertia of the mirror about its axis of rotation,

I
dω

dt
' 4bPα

πc
, or ω(t) ' 4bPαt

πcI
.

[Some students may derive the rate of change of angular velocity using energy conservation, rather
than considering the increase of angular momentum of the mirror: To first order in v/c, Er =
E(1 − 2u cos θ/c), therefore the energy imparted to the mirror is

∆E = E − Er ' 2uE cos θ

c
=

2ωbE

c



In one revolution, the number of photons intersected is

4α

2π
× n

2π

ω
=

4αn

ω
.

Therefore the rate of increase of rotational energy (Erot = Iω2/2) is

dErot

dt
=

4αN

ω

2ωbE

c

dn

dt
=

8αbP

c

ω

2π
=

4αbPω

πc

Thus Iω.dω/dt = 4αbP/πc, leading to ω(t) ' 4αbPt/πcI, again.]

(d)

To estimate the deflection of the beam, one first needs to work out the moment of inertia of a
rectangle of mass m and side 2a about the central axis. This is just like a rod. From basic
principles,

I =

∫ a

−a

mdx

2a
x2 =

[

mx3

6a

]a

−a

=
ma2

3
=

mb2 sec2 α

3
.

With the stated geometry, a = b
√

2, or α = 45◦, so

ω ' 12αPt cos2 α

πmcb
→ 3Pt

mca
√

2
.

At the edge, u = ωa = 3Pt/mc
√

2, and the angle of deviation is

δ =
2u sin α

c
=

3Pt

mc2

[Interestingly, it is determined by the ratio of the energy produced by the laser to the rest-mass
energy of the mirror.]

Using the given numbers, and in SI units, the deviation is

ξ ' 104δ =
104 × 3 × 100 × 24 × 3600

10−3 × (3 × 108)2
' 2.9 mm .

ξ
mirror

laser

screen δ
4

π/4
10  m


