Sound Propagation

Introduction

The speed of propagation of sound in the ocean varies with depth, temperature and salinity. Figure 1(a) below shows the variation of sound speed c with depth z for a case where a minimum speed value c_0 occurs midway between the ocean surface and the sea bed. Note that for convenience z = 0 at the depth of this sound speed minimum, $z = z_S$ at the surface and $z = -z_b$ at the sea bed. Above z = 0, c is given by;

$$c = c_0 + bz$$

Below z = 0, c is given by;

$$c = c_0 - bz$$

In each case $b = \left| \frac{dc}{dz} \right|$, that is, b is the magnitude of the sound speed gradient with depth; b is assumed constant.

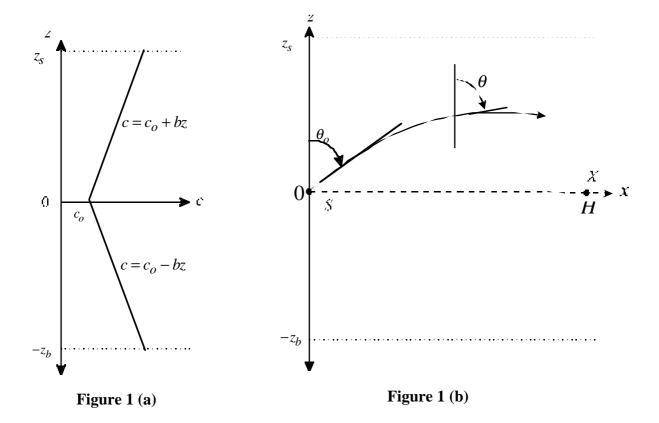


Figure 1(b) shows a section of the *z-x* plane through the ocean, where *x* is a horizontal direction. At all points along the *z-x* section the sound speed profile c(z) is as shown in figure 1(a). At the position z = 0, x = 0, a sound source *S* is located. Part of the output from this source is described by a sound ray emerging from *S* with initial angle θ_o as shown. Because of the variation of sound speed with *z*, the ray will be refracted, leading to varying values along the trajectory of the ray.

(a) (6 marks)

Show that the initial trajectory of the ray leaving the source S and constrained to the z-x plane is an arc of a circle with radius R where:

$$R = \frac{c_o}{b \sin \theta_o} \quad \text{for} \quad 0 \le \theta_0 < \frac{\pi}{2}$$

(b) (3 marks)

Derive an expression involving z_s , c_o and b to give the smallest value of the angle θ_o for upwardly directed rays which can be transmitted without the sound wave reflecting from the sea surface.

(c) (4 marks)

Figure 1(b) shows the position of a sound receiver H which is located at the position z = 0, x = X. Derive an expression involving b, X and c_o to give the series of values of angle θ_o required for the sound ray emerging from S to reach the receiver H. Assume that z_S and z_b are sufficiently large to remove the possibility of reflection from sea surface or sea bed.

(d) (2 marks)

Calculate the smallest four values of θ_o for refracted rays from S to reach H when;

$$X = 10,000 \text{ m}$$

 $c_0 = 1,500 \text{ m/s}$
 $b = 0.02000 \text{s}^{-1}$

(e) (5 marks)

Derive an expression to give the time taken for sound to travel from S to H following the ray path associated with the **smallest** value of angle θ_o , as determined in part (c). Calculate the value of this transit time for the conditions given in part (d). The following result may be of assistance:

$$\int \frac{dx}{\sin x} = \ln \tan \left(\frac{x}{2}\right)$$

Calculate the time taken for the direct ray to travel from S to H along z=0. Which of the two rays will arrive first, the ray for which $\theta_o = \frac{\pi}{2}$, or the ray with the smallest value of θ_o as calculated for part (d)?