Question 2

Sound Propagation

Introduction

The speed of propagation of sound in the ocean varies with depth, temperature and salinity. Figure 1(a) below shows the variation of sound speed c with depth z for a case where a minimum speed value c_{O} occurs midway between the ocean surface and the sea bed. Note that for convenience $z=0$ at the depth of this sound speed minimum, $z=z_{S}$ at the surface and $z=-z_{b}$ at the sea bed. Above $z=$ $0, \mathrm{c}$ is given by;

$$
c=c_{\mathrm{O}}+b z
$$

Below $z=0, c$ is given by;

$$
c=c_{\mathrm{O}}-b z
$$

In each case $b=\left|\frac{d c}{d z}\right|$, that is, b is the magnitude of the sound speed gradient with depth; b is assumed constant.

Figure 1 (a)

Figure 1 (b)

Figure 1(b) shows a section of the $z-x$ plane through the ocean, where x is a horizontal direction. At all points along the $z-x$ section the sound speed profile $c(z)$ is as shown in figure 1(a). At the position $z=0, x=0$, a sound source S is located. Part of the output from this source is described by a sound ray emerging from S with initial angle θ_{o} as shown. Because of the variation of sound speed with z, the ray will be refracted, leading to varying values along the trajectory of the ray.
(a) (6 marks)

Show that the initial trajectory of the ray leaving the source S and constrained to the $z-x$ plane is an arc of a circle with radius R where:

$$
R=\frac{c_{o}}{b \sin \theta_{o}} \text { for } 0 \leq \theta_{0}<\frac{\pi}{2}
$$

(b) (3 marks)

Derive an expression involving z_{S}, c_{O} and b to give the smallest value of the angle θ_{o} for upwardly directed rays which can be transmitted without the sound wave reflecting from the sea surface.
(c) (4 marks)

Figure 1(b) shows the position of a sound receiver H which is located at the position $z=0, x=$ X. Derive an expression involving b, X and c_{O} to give the series of values of angle θ_{O} required for the sound ray emerging from S to reach the receiver H. Assume that z_{s} and z_{b} are sufficiently large to remove the possibility of reflection from sea surface or sea bed.
(d) (2 marks)

Calculate the smallest four values of θ_{o} for refracted rays from S to reach H when;
$X=10,000 \mathrm{~m}$
$c_{\mathrm{O}}=1,500 \mathrm{~m} / \mathrm{s}$
$b=0.02000 \mathrm{~s}^{-1}$
(e) (5 marks)

Derive an expression to give the time taken for sound to travel from S to H following the ray path associated with the smallest value of angle θ_{o}, as determined in part (c). Calculate the value of this transit time for the conditions given in part (d). The following result may be of assistance:

$$
\int \frac{d x}{\sin x}=\ln \tan \left(\frac{x}{2}\right)
$$

Calculate the time taken for the direct ray to travel from S to H along $z=0$. Which of the two rays will arrive first, the ray for which $\theta_{o}=\frac{\pi}{2}$, or the ray with the smallest value of θ_{o} as calculated for part (d)?

