SOLUTIONS to Theory Question 1

Geometry Each side of the diamond has length $L = \frac{a}{\cos \theta}$ and the distance between parallel sides is $D = \frac{a}{\cos \theta} \sin(2\theta) = 2a \sin \theta$. The area is the product thereof, A = LD, giving

1.1
$$A = 2a^2 \tan \theta \,.$$

The height H by which a tilt of ϕ lifts outl above in is $H = D \sin \phi$ or

$$H = 2a\sin\theta\,\sin\phi\,.$$

Optical path length Only the two parallel lines for \mathbb{N} and $\mathbb{O} \mathbb{U} \mathbb{1}$ matter, each having length L. With the de Broglie wavelength λ_0 on the \mathbb{N} side and λ_1 on the $\mathbb{O} \mathbb{U} \mathbb{1}$ side, we have

$$\Delta N_{\rm opt} = \frac{L}{\lambda_0} - \frac{L}{\lambda_1} = \frac{a}{\lambda_0 \cos \theta} \left(1 - \frac{\lambda_0}{\lambda_1} \right).$$

The momentum is h/λ_0 or h/λ_1 , respectively, and the statement of energy conservation reads

$$\frac{1}{2M} \left(\frac{h}{\lambda_0}\right)^2 = \frac{1}{2M} \left(\frac{h}{\lambda_1}\right)^2 + MgH,$$

which implies

1.2

$$\frac{\lambda_0}{\lambda_1} = \sqrt{1 - 2\frac{gM^2}{h^2}\lambda_0^2H} \,.$$

Upon recognizing that $(gM^2/h^2)\lambda_0^2H$ is of the order of 10^{-7} , this simplifies to

$$\frac{\lambda_0}{\lambda_1} = 1 - \frac{gM^2}{h^2}\lambda_0^2 H \,,$$

and we get

$$\Delta N_{\rm opt} = \frac{a}{\lambda_0 \cos \theta} \frac{g M^2}{h^2} \lambda_0^2 H$$

or

1.3
$$\Delta N_{\rm opt} = 2 \frac{g M^2}{h^2} a^2 \lambda_0 \tan \theta \, \sin \phi \,.$$

A more compact way of writing this is

1.4
$$\Delta N_{\rm opt} = \frac{\lambda_0 A}{V} \sin \phi \,,$$

where

1.4
$$V = 0.1597 \times 10^{-13} \,\mathrm{m}^3 = 0.1597 \,\mathrm{nm} \,\mathrm{cm}^2$$

is the numerical value for the volume parameter V.

There is constructive interference (high intensity in out1) when the optical path lengths of the two paths differ by an integer, $\Delta N_{opt} = 0, \pm 1, \pm 2, \ldots$, and we have destructive interference (low intensity in out1) when they differ by an integer plus half, $\Delta N_{opt} = \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \ldots$. Changing ϕ from $\phi = -90^{\circ}$ to $\phi = 90^{\circ}$ gives

$$\Delta N_{\rm opt} \Big|_{\phi = -90^{\circ}}^{\phi = 90^{\circ}} = \frac{2\lambda_0 A}{V} \,,$$

which tell us that

1.5
$$\ddagger$$
 of cycles = $\frac{2\lambda_0 A}{V}$

4

Experimental data For a = 3.6 cm and $\theta = 22.1^{\circ}$ we have A = 10.53 cm², so that

1.6
$$\lambda_0 = \frac{19 \times 0.1597}{2 \times 10.53} \,\mathrm{nm} = 0.1441 \,\mathrm{nm} \,.$$

And 30 full cycles for $\lambda_0 = 0.2 \,\mathrm{nm}$ correspond to an area

1.7
$$A = \frac{30 \times 0.1597}{2 \times 0.2} \,\mathrm{cm}^2 = 11.98 \,\mathrm{cm}^2 \,.$$