SOLUTIONS to Theory Question 1

Geometry Each side of the diamond has length $L=\frac{a}{\cos \theta}$ and the distance between parallel sides is $D=\frac{a}{\cos \theta} \sin (2 \theta)=2 a \sin \theta$. The area is the product thereof, $A=L D$, giving

1.1

$$
A=2 a^{2} \tan \theta
$$

The height H by which a tilt of ϕ lifts out1 above in is $H=D \sin \phi$ or
1.2

$$
H=2 a \sin \theta \sin \phi
$$

Optical path length Only the two parallel lines for in and out1 matter, each having length L. With the de Broglie wavelength λ_{0} on the in side and λ_{1} on the out1 side, we have

$$
\Delta N_{\mathrm{opt}}=\frac{L}{\lambda_{0}}-\frac{L}{\lambda_{1}}=\frac{a}{\lambda_{0} \cos \theta}\left(1-\frac{\lambda_{0}}{\lambda_{1}}\right) .
$$

The momentum is h / λ_{0} or h / λ_{1}, respectively, and the statement of energy conservation reads

$$
\frac{1}{2 M}\left(\frac{h}{\lambda_{0}}\right)^{2}=\frac{1}{2 M}\left(\frac{h}{\lambda_{1}}\right)^{2}+M g H
$$

which implies

$$
\frac{\lambda_{0}}{\lambda_{1}}=\sqrt{1-2 \frac{g M^{2}}{h^{2}} \lambda_{0}^{2} H} .
$$

Upon recognizing that $\left(g M^{2} / h^{2}\right) \lambda_{0}^{2} H$ is of the order of 10^{-7}, this simplifies to

$$
\frac{\lambda_{0}}{\lambda_{1}}=1-\frac{g M^{2}}{h^{2}} \lambda_{0}^{2} H
$$

and we get

$$
\Delta N_{\mathrm{opt}}=\frac{a}{\lambda_{0} \cos \theta} \frac{g M^{2}}{h^{2}} \lambda_{0}^{2} H
$$

or

1.3

$$
\Delta N_{\mathrm{opt}}=2 \frac{g M^{2}}{h^{2}} a^{2} \lambda_{0} \tan \theta \sin \phi
$$

A more compact way of writing this is
\square where

1.4

$$
\Delta N_{\mathrm{opt}}=\frac{\lambda_{0} A}{V} \sin \phi,
$$

$$
V=0.1597 \times 10^{-13} \mathrm{~m}^{3}=0.1597 \mathrm{~nm} \mathrm{~cm}^{2}
$$

is the numerical value for the volume parameter V.
There is constructive interference (high intensity in out1) when the optical path lengths of the two paths differ by an integer, $\Delta N_{\text {opt }}=0, \pm 1, \pm 2, \ldots$, and we have destructive interference (low intensity in out1) when they differ by an integer plus half, $\Delta N_{\text {opt }}= \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \ldots$. Changing ϕ from $\phi=-90^{\circ}$ to $\phi=90^{\circ}$ gives

$$
\left.\Delta N_{\mathrm{opt}}\right|_{\phi=-90^{\circ}} ^{\phi=90^{\circ}}=\frac{2 \lambda_{0} A}{V},
$$

which tell us that
1.5

$$
\sharp \text { of cycles }=\frac{2 \lambda_{0} A}{V} .
$$

Experimental data For $a=3.6 \mathrm{~cm}$ and $\theta=22.1^{\circ}$ we have $A=10.53 \mathrm{~cm}^{2}$, so that
1.6

$$
\lambda_{0}=\frac{19 \times 0.1597}{2 \times 10.53} \mathrm{~nm}=0.1441 \mathrm{~nm} .
$$

And 30 full cycles for $\lambda_{0}=0.2 \mathrm{~nm}$ correspond to an area
1.7

$$
A=\frac{30 \times 0.1597}{2 \times 0.2} \mathrm{~cm}^{2}=11.98 \mathrm{~cm}^{2}
$$

