$1^{\text {st }}$ Question "Pink"

1.1

Period $=3.0$ days $=2.6 \times 10^{5} \mathrm{~s}$.
Period $=\frac{2 \pi}{\omega} \Rightarrow \omega=2.5 \times 10^{-5} \mathrm{rad} \mathrm{s}^{-1}$.

1.2

Calling the minima in the diagram $1, I_{1} / I_{0}=\alpha=0.90$ and $I_{1} / I_{0}=\beta=0.63$, we have:
$\frac{I_{0}}{I_{1}}=1+\left(\frac{R_{2}}{R_{1}}\right)^{2}\left(\frac{T_{2}}{T_{1}}\right)^{4}=\frac{1}{\alpha}$
$\frac{I_{2}}{I_{1}}=1-\left(\frac{R_{2}}{R_{1}}\right)^{2}\left(1-\left(\frac{T_{2}}{T_{1}}\right)^{4}\right)=\frac{\beta}{\alpha}$
From above, one finds:
$\frac{R_{1}}{R_{2}}=\sqrt{\frac{\alpha}{1-\beta}} \Rightarrow \frac{R_{1}}{R_{2}}=1.6 \quad$ and $\quad \frac{T_{1}}{T_{2}}=\sqrt[4]{\frac{1-\beta}{1-\alpha}} \Rightarrow \frac{T_{1}}{T_{2}}=1.4$
2.1)

Doppler-Shift formula:
$\frac{\Delta \lambda}{\lambda_{0}} \cong \frac{v}{c}$ (or equivalent relation)
Maximum and minimum wavelengths: $\lambda_{1, \text { max }}=5897.7 \AA, \lambda_{1, \text { min }}=5894.1 \AA$

$$
\lambda_{2, \text { max }}=5899.0 \AA, \lambda_{2, \text { min }}=5892.8 \AA
$$

Difference between maximum and minimum wavelengths:

$$
\Delta \lambda_{1}=3.6 \AA, \quad \Delta \lambda_{2}=6.2 \AA
$$

Using the Doppler relation and noting that the shift is due to twice the orbital speed:

$$
\begin{aligned}
& v_{1}=c \frac{\Delta \lambda_{1}}{2 \lambda_{0}}=9.2 \times 10^{4} \mathrm{~m} / \mathrm{s} \\
& v_{2}=c \frac{\Delta \lambda_{2}}{2 \lambda_{0}}=1.6 \times 10^{5} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

2.2) As the center of mass is not moving with respect to us:
$\frac{m_{1}}{m_{2}}=\frac{v_{2}}{v_{1}}=1.7$
2.3)

Writing $r_{i}=\frac{v_{i}}{\omega}$ for $i=1,2$, we have
$r_{1}=3.8 \times 10^{9} \mathrm{~m}$,

$$
r_{2}=6.5 \times 10^{9} \mathrm{~m}
$$

2.4)
$r=r_{1}+r_{2}=1.0 \times 10^{10} \mathrm{~m}$
3.1)

The gravitational force is equal to mass times the centrifugal acceleration $G \frac{m_{1} m_{2}}{r^{2}}=m_{1} \frac{v_{1}{ }^{2}}{r_{1}}=m_{2} \frac{v_{2}{ }^{2}}{r_{2}}$
Therefore,

$$
\left\{\begin{array} { l }
{ m _ { 1 } = \frac { r ^ { 2 } v _ { 2 } ^ { 2 } } { G r _ { 2 } } } \\
{ m _ { 2 } = \frac { r ^ { 2 } v _ { 1 } ^ { 2 } } { G r _ { 1 } } }
\end{array} \Rightarrow \left\{\begin{array}{l}
m_{1}=6 \times 10^{30} \mathrm{~kg} \\
m_{2}=3 \times 10^{30} \mathrm{~kg}
\end{array}\right.\right.
$$

4.1) As it is clear from the diagram, with one significant digit, $\alpha=4$.

4.2)

As we have found in the previous section: $L_{i}=L_{S u n}\left(\frac{M_{i}}{M_{S u n}}\right)^{4}$ So,

$$
\begin{aligned}
& L_{1}=5 \times 10^{28} \mathrm{Watt} \\
& L_{2}=6 \times 10^{27} \mathrm{Watt}
\end{aligned}
$$

4.3) The total power of the system is distributed on a sphere with radius d to produce I_{0}, that is:
$I_{0}=\frac{L_{1}+L_{2}}{4 \pi d^{2}} \Rightarrow d=\sqrt{\frac{L_{1}+L_{2}}{4 \pi I_{0}}}=1 \times 10^{18} \mathrm{~m}$

$$
=100 \mathrm{ly} .
$$

$$
\theta \cong \tan \theta=\frac{r}{d}=1 \times 10^{-8} \mathrm{rad}
$$

4.5)

A typical optical wavelength is λ_{0}. Using uncertainty relation:

$$
D=\frac{d \lambda_{0}}{r_{\text {tot }}}=50 \mathrm{~m}
$$

