
 

 

3rd Question “Blue” 
 
1.1)  One may use any reasonable equation to obtain the dimension of the questioned 
quantities.  
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1.2) Using the Stefan-Boltzmann's law,  

 4θσ=
Area

Power , or any equivalent relation, one obtains:       
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1.3)  The Stefan-Boltzmann's constant, up to a numerical coefficient, equals 

 where ,δγβασ BkGch= δγβα ,,, can be determined by dimensional analysis. 
Indeed, where e.g.  ,][][][][][ δγβασ BkGch= .][ 43 −−= KMTσ
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The above equality is satisfied if,            
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2.1) Since , the area of the event horizon, is to be calculated in terms of from a 
classical theory of relativistic gravity, e.g. the General Relativity, it is a combination of 

, characteristic of special relativity, and  characteristic of gravity. Especially, it is 
independent of the Planck constant  which is characteristic of quantum mechanical 
phenomena.  
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Exploiting dimensional analysis, 
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The above equality is satisfied if,   
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2.2) 

From the definition of entropy 
θ
dQdS = , one obtains   1221]][[][ −−− == KTMLES θ

 
 
2.3)  Noting AS=η , one verifies that,  
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Using the same scheme as above, 
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3.1)  
The first law of thermodynamics is dWdQdE += . By assumption, . Using the 

definition of entropy, 

0=Wd

θ
dQdS = , one obtains,  
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3.2) The Stefan-Boltzmann's law gives the rate of energy radiation per unit area. Noting 
that  we have: 2mcE =
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3.3)  
By integration:   
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3.4)   measures the change in VC E  with respect to variation of θ .  
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4.1)  
Again the Stefan-Boltzmann's law gives the rate of energy loss per unit area of the black 
hole. A similar relation can be used to obtain the energy gained by the black hole due to 
the background radiation. To justify it, note that in the thermal equilibrium, the total 
change in the energy is vanishing. The blackbody radiation is given by the Stefan-
Boltzmann's law. Therefore the rate of energy gain is given by the same formula.  
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4.2)   

Setting 0=
dt
dm , we have: 
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4.4) Use the solution to 4.2,  

BBkG
hcm

θ
1

2

3
* = and 3.1 to obtain,   B

B mkG
hc θθ == *

3
* 1

2
      

One may also argue that corresponds to thermal equilibrium. Thus for the 
black hole temperature equals

*m *mm =
Bθ . 
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4.5) Using the answer to 4.3, one easily verifies that,  
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So the system always goes away from the equilibrium. So the equilibrium, is unstable.  
 


