3" Question “Blue”

1.1) One may use any reasonable equation to obtain the dimension of the questioned
quantities.

[) The Planck relation is hv=E = [h][vl=[E] = [h]1=[E][v] ' =MLT"

1) [c]=LT™
|||) F= G::nzm = [G] :[F][rZ][m]—Z -M —1L3-|-_2

IV) E=K,0 = [Ky]=[0][E]=MLT 2K

1.2) Using the Stefan-Boltzmann's law,
Power

Area
[EILT ' =[c]K* = [0]=MT K™,

=o6", or any equivalent relation, one obtains:

1.3) The Stefan-Boltzmann's constant, up to a numerical coefficient, equals
o= h“cﬁGka‘y, where «, £, 7,06 can be determined by dimensional analysis.
Indeed, [c] = [N]*[c)[GY [k ]°, where e.g. [o] = MT °K™.

MT 3K = (MLZT _I)H(LT _l)ﬂ(l\/l _1L3T_ZY(ML2T_2K_1)J _ M @S| 2a+pe3y 20T —a—ﬂ—Z;/—Z&K—51

The above equality is satisfied if,

a—-y+o=1 a=-3,

200+ B+3y+26=0, =-2, 4
= atp+3y = P = o= kZBS.

—a—f—-2y—-20=-3, y =0, ch

—5=-4, 5=4.

2.1) Since A, the area of the event horizon, is to be calculated in terms of m from a
classical theory of relativistic gravity, e.g. the General Relativity, it is a combination of
c, characteristic of special relativity, and G characteristic of gravity. Especially, it is
independent of the Planck constant h which is characteristic of quantum mechanical
phenomena.

A=G’m’

Exploiting dimensional analysis,
= [Al=[CI[cV[m] = L =M"CT2) (LT M =M« Pehy2es



The above equality is satisfied if,

—0!+}/=O, azzl 272
m-G
=>:13a+p=2, = p=-4 = A=—
C
-2a—-p=0, y =2,

2.2)
From the definition of entropy dS = de one obtains [S]=[E][6] "' = ML°T ?K™*

2.3) Noting 7 =S/A, one verifies that,
[7]=[SI[A]" = MT ?K™,

[77] — [G]a [h]ﬁ[C]y[kB](s — M —a+f+5 L3a+2ﬂ+y+25-|- —2a-fp-y-20 K —5’
Using the same scheme as above,

—a+f+0 =1 =-1,
3a+2 +25=0, =-1, 8
= atefity = thus, n:CkB.
20— pf~-y—-20=-2, y =3, Gh
0 =1 o=1
3.1)
The first law of thermodynamics is dE = dQ + dW . By assumption, dW =0. Using the
definition of entropy, dS = d7Q one obtains,
dE =6,dS +0, (dwW =0)
Gk _ _
S — B m21 1 1
Using, ch one obtains, 6, = g€ _ (d—sj C cz(d—sj
2 ds dE dm
E =mc*,
3
Therefore, 8, :(EJ ch i.
2)Gkg m

3.2) The Stefan-Boltzmann's law gives the rate of energy radiation per unit area. Noting
that E = mc® we have:



dE /dt = —06,,*A,
— kB4 4
°T o L dm_ k' (e 1) mG?
m2G?2 dt - ¢*h’(Gkym) c* '
A= o
E =mc”
dm__1ch L,
dt 16 G*m*
3.3)
By integration:
4 4
am__LEA L o [midm=—[-T
dt 16 G* m 16G
3c’h
= m’(t) - m*(0) = ———t,
O-m*©)=-
At t =t~ the black hole evaporates completely:
mtH=0 =t —Em?’
3c’h

3.4) C, measures the change in E with respect to variation of 6.

dE
AN
E =mc?, = Q,:—% ?
5 ch
~ch 1
2Gk, m

4.1)

Again the Stefan-Boltzmann's law gives the rate of energy loss per unit area of the black
hole. A similar relation can be used to obtain the energy gained by the black hole due to
the background radiation. To justify it, note that in the thermal equilibrium, the total
change in the energy is vanishing. The blackbody radiation is given by the Stefan-
Boltzmann's law. Therefore the rate of energy gain is given by the same formula.

dE 4 4

— = —c0'A+ 06, A dn_ he* 1 G? 42
N = —— 4+ — (k.6 )'m
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4.2)

Setting (il_r: =0, we have:

he* 1 G?
T16G2 | o’
and consequently,
. ¢ch 1

"~ 2Gk, 6,

(kB s )4 m*Z =0

4.3)

ch 1 dm he* 1 m*
B = — x f— _ :——2_2 —_
2Gk, m dt  16GZm

4.4) Use the solution to 4.2,
3 3
m=_C h 1 and 3.1 to obtain, @ =— h l*
2Gk, 6, 2Gkg m
One may also argue that m” corresponds to thermal equilibrium. Thus for m = m”the
black hole temperature equalsé; .

B

Or one may set dd—lf “ —0(9*4 - 954)A: 0 toget 8 =6,.

4.5) Using the answer to 4.3, one easily verifies that,
* dm « dm
m>m = —>0 and m<m = —<0
dt dt

So the system always goes away from the equilibrium. So the equilibrium, is unstable.



