The Design of a Nuclear Reactor .
Deduct 0.1 if’ units missing in final answer uplo a maximum of 0.5 points

Uraninm occurs in nature as UO; with only 0.720% of the uranium atoms being 31U Neutron
induced fission accurs readily in #¥U with the emission of 2-3 fission neutrons having high
kinetic encrgy. This fission probability will increase if the neutrons inducing fssion have low
kinetic energy, So by reducing the kinetic enercy of the fission neutrons, one can induce a chain
of fissions in other *U nuclei. This forms the basis of the power generating nuclear reactor

(NR).

Atypical NR consizgts of a eylindrical tank of height # and radius R filled with a material callad
moderator. Cylindrical tubes, called fuel channels, each containing a cluster of evlindrical fuel
pins of natural U, in solid form of height H, are kept axially in a square array., Flssion
nentrons, coming outward from a fuel channel, collide with the moderator, losing energy, and
reach the surrounding fuel channels with low enough energy to cause fission (Figs I-1I1). Heat
generated from fission in the pin is transmitted to a coolant fluid flowing along its length. In
the enrrent problem we shall study some of the physics behind the (A) Fuel Pin, {B) Moderator
and (C] NR of cylindrical geometry.

Fig-11

Schematic sketeh of the
MNuclear Reactor (NR)
Fig-I: Enlarged view of a
fuel channel (1-Fuel Pins)
Fig-1I: A view of the NR

(2-Fuel Channels)

Fig-III: Top view of NR
{3-Square Arrangement of
Fuel Channels and
A-Typical Newtron Paths).

Only components relevant
to the problem are shown
g {e.e. control rods and

coolant are not shown).

AL Fuel Pin ) .

Data for UD,
L. Molecular weight AL, =0.270 kg mol ™! 2. Density p=1.060x10* kg m™
3. Melting point T,,=3.138x10° K 4. Thermal conductivity A=3.280 Wm~! K-

Al Consider the [ollowing fission reaction of a stationary %1 after it absorbs & neutron of
negligible kinetic energy.
WU+ n —"Zr+"Cer 2'n+ AE
Estimate AR (in MeV) the total fission energy released. The nuclear masses are: m(**1)

= 235.044 u; m(MZr) = 93.9063 w; m (' Ce) = 139905 w m('n) = LOOSET wand 1 u=
931.502 MeWV e Ignore charge imbalance,

0.




Solution: AF = 208.684 MeV

AE = [m{*®U) + m('n) — m(MZ0) — m("*Ce) — 2m('n)]?

| Since Lhe data is supplied in terms of unified atomic masses (u), we have

AE = [m(BU) — m(MZr) — m(**%Ce) — m(*n)]c? 0.3

— 208 684 MeV [Acceptable Range (208.000 to 209.000)] 0.5

{0.1 deducted if the answer is not in 6 significant figures)
from the given data.

A2 Fstimate N the number of #°U atoms per unit volume in natural U0, 10.5]

Solution: N = 1.702 x 1% m~3

Detailed solution: The number of UOs molecules per m® of the fuel N is given
in the terms of its density p, the Avogadro number Ny and the average moleciular
weight A, as

: PN
N == .2
1 M, (
10600 x 6.022 x 10 o :
= 0570 — = 23064 % 10** m 0.1
Each molecule of Uk, contains one uraninm atom.  Since only 0.72% of these are
PEEE
I
N = 0.0072% N, 0.1
= 1.702 » 10%° m ¥ [Acceptable Range (1.650 to 1.750)] 0.1

A3 Assume that the nentron s ¢ = 2000 x 10" m~% 57 on the fuel is waiform. The fission
crass-section {effective area of the target nuclens) of a 51U nucleus is op = 5.400 %1072
m? £ 80.00% of the fission cnergy is available as heat, estimate ( (in W m™) the rate of
heat production in the pin per unit volume, 1MeV = 1602 x 107 [, [1.2]

Solution: ¢ = 4917 x 10% W /m®

Detoled solution: It 15 given that 80% of the fission energy is available as heat
thus the heat energy available per fission F; is from a-(1}

Ff = 0.8 x 208.7 MeV 0.3
= 166.96 MV 0.1
= 267h x 107 ] 0.1

The tolal cross-section per unit volume is & % gy Thos the heat produced per unit
volume per unit time ) i=

(Q=:’\"-)<U‘f><r__?'>><_8f 0.6
= (1.702 % 10%9) % (5.4 x 107%6) % (2 x 10'8) x (2.675 x 107) W/m®
= 4917 x 10° W/m® [Acceptable Range (4.800 to 5.000)] 0.1




A4 The steady-state temperature difference between the center (7)) and the surface (7,) of the
pin can be expressed as T, — T, = kF(Q a, A) where k = 1 /4 15 a dunensionless constant
and a is the radius of the pin. Obtain /(€2 «. A) by dimensional analvsis.

Solution: T, ~ 7, = i
Detailed solufion: The dimensions of T, — T, is temperature. We write this as
T, =T, = [K]. Once can similarly write down the dimensions of (2, 0 and A Equating
Lhe temperature to powers of €, o and A, one could state the following dimensional
eqguallon;
K = 0%

[MLAT3 8 [E] P [M P8
Thiz vields the follewing algehraic cquations
+ = -1 equating powers of temperature
re 4y = 0 equating powers of mass or time. From the previous equation we get oo = 1
| Mext —a -+ J+ v = 0equating powers of length. This yvields & = 2.

{([0.1] for each correct value)

2
l s e . Ja : : : :
| Thus we obtain 7, — T, = —— where we insert the dimensionless factor 1/4 as sug-

gested in the problem. No ;:)eﬂ,aity if the factor 1/4 is noi written.

Noter Same credit for alternate ways of obtaining o, 3.~

A5 The desired temperature of the coolant is 5770 % 10% K. BEstimate the upper limit o, on
the radius a of the pin.

Solution: a, = 8267 x 107% n.

Detailed solution: The meliing point of UOy is 3138 K and the maximum tempera-
ture of the coolant is 577 K. This sets a limit on the maximum permissible temperature
(1. — T,) to be less than (3138 - 577 = 2501 K) to avoid “melidown”™, Thus one may
| take a maxinum of (T, — 7)) = 2561 K.
| Noting that A = 3.28 W/m - K. we have

b 2561 = 4 x 3.28
T 4917 x 108
Where we have used the value of (J from A2. This vields a, = 8.267 »x 1077 m.. So
| 0, =B267 107% m constitutes an upper limit on the radius of the fuel pin.
0.0 for (T, — T,) < 2000 K + 0.3 for a, < 7.305 = 1073
0.0 for (T, — T,) > 2561 K + 0.3 for a, > 8.267 x 10°3
0.3 for 2000 < (T, — T,) < 2200 K + 0.3 for 7.05 < a, < 7.662x 1073
0.7 for 2200 < (T, - 1,) = 2561 K + 0.3 for 7.662 < a4, < 8267 = 1073

(0.2 deducted for missing factor 1/4)

Nate: The Tarapur 3 & 4 NR in Western India has a fuel pin radius of 6.090 x 1074
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B. The Moderator

Consider the two dimensional elastic collision between a neutron of mass 11 and a moderator
atom of mass Aw. Before collision all the moderator atoms are considered at rest in the
laboratory frame (LF). Let T and &) be the velocities of the neutron before and after collision
respectively in the LF. Let o, be the velocity of the conter of mass (CM) frame relative to LE
and & be the neutron scattering angle in the CM frame. All the particles involved in collisions
are moving at non-relativistic speeds

B1 The collision in LI s shown schematically with 5 as the scattering angle (Fig-1V). Sketch
the collision schematically in CM frame. Label the particle velocities for 1, 2 and 3 in
terms of @, 7 and 7,7, Indicate the seattering angle 0.

Collision in the Laborarory Frame
| -Newtron before collision
2-Newtron after collision
I-Moderaior Atom before collision
d-Moderatar Arom after collision

Solution:

Laboratory Frame Center of Mass Frame

(0.2 for ¢ shown greater than §,)

‘ (For 3 or more correct arrows 0.2 or else 0.0)

(IFor 3 correct arrows but one incorrect 0.1)

(0.2 for correct labeling of each particle with or without vector sign)

B2 Oblain v and V. the speeds of the neutron and the moderator atom in the CM frame after
the collision, in terms of A and v,

f =3

| Solution: Detasled sofution: Before the collision in the COMEF 1w — v,) and v,

Lwill be magnitude of the velocities of the neutron and moederator atom respectively.

From momentum conservation in the COMF, v, — vy, = Avy, gives vy, = S

L.0]

0]

0.3




After the colbision, let v and V' be magnitude of the velocities of neutron and moderator
atom respectively in the CM frame, From conservalion laws,

sl - %{z:b— tm)? + Avm = é-ﬁ—- é_»w‘-’.m 0.2+0.2])
Sc:u[v'mg gives 1 = AL:*;— and V' = -2 {OR) From definition of center of mass frame
(o A|1 Before the collision in the CA frame v, — v, = %‘l"']-
pitude of the velocities of the neutron and moderator atom respectively, [n elastic
collision the particles are scattered in the oppo'site direction in the CM frame and so

the speeds remain same v = %’; and V = 4 (= [0.240.1]).

and v, will be mag-

Note: Alternative solutions are worked out in the end and will get appropriate weigh-
| tage. |

B3 Derive an expression for Gla, #) = E,/Ey, where £y and £, are the kinetic enervics of the
neutron, in the LEF. before and after the collision respectively, and o = [(A — 1)/(A4 + 1)]%,

Solution:

E A* 1+ 24 cos
. Gla.8) = EBa _ A +24cos0+1

I
= o 9-'
Ey (A+1)2 .2[“ 4 e} + (1 — o) cos

Detailed solution: Since 7, = T + m g ="+ e;‘; | Q't"e',,, cos 6 (-~ [(L3]]. Substi-

. 4% 2'
tuting the values of v and v, 12 = ﬁﬂ—‘, toprfer + o 135 cosf {— [0.2]), 50 .

lf £, A2 ZAcosd4 1

W B, (A+1)?
A% 24 1
Y. 6) = S _
o, 0) AT 1P + AP cos 2[.‘] o)+ (1 —a)eosf].

Alternate form
(L—alll —cosd)
- .

Dimensionally correct but wrong expressions of v and 17 and with
substitutions up to F,/F, half credit 0.5

Note: Alternative salutions are worked ont in the end and will get appropriate weigh- |
tage, I

B4 Assume that the above axpression holds for Dy molecule. Caleulate the maximum pos-
sible fractional energy loss f; = E“?E” of the neutron for the DO (20 1) moderator.

| Solution: f, = 0.181

Detailed solution: The maximum energy loss will be when the collision is head
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on te., Ey will be minimum [or the seattering angle ¢ = . ]I

So E, = Fpm = aB),.
For D20, a = 0.819 and maximurm fractional loss (ﬁ*_éa”‘) =1-a=10181. [Ade- |

ceplable Range (0.170 to 0.190)]

Correctly calculated f, with dimensionally correct bul wrong expression
| having minimum at ¢ = 7 full credit 0.5

C. The Nuclear Reactor
T operate the NI at any constant neutron Qux U (steady state), the leakage of neutrons has to
be compensated by an excess production of neutrons in the reactor. For a reactor in eylindrical
gearnetry the lealage rate is & [[:“—J,S")? + (g;)?] U and the excess production rate is fW. The
constants £ and ky depend on the material properties of the NTR.

21 Consider a NIV with & = 10201072 m and f = 8787« 107 m~!. Noting that for a

fized volume the leakage rate is to be minimized for efficient fuel utilisation obtain the
dimensions of the NR in the steady state.

Detailed solution: For constant volume Vo= wi2H |

[y ]

7} |i2.4U52?4H '.'rz} B 2 405%r 2

| v I v  HS

"

=10,

a2
gives (245)7 = 2 (2

L

For steady state,

5|2 405N T2
1.nz1><m-4[( 40}) +(l) ww:gm?xm'i"m.

It H

Hence H = D.866 m [Acceptable Range (5.870 to 5.890)]
R =3.175 m [Acceptable Range (3.170 to 3.180)].

Alternative Non-Calculus Method to Optimize

L , 2,405 ? T )
Minimisation of the expression : (_h?) . for a fixed volume |V =

R
TREH . 5
Substituting for B* in terms of V. H we get il S e L

Solution: R = 3.175 m, If = 5.866 m.

0.2

0.1

0.2

-

0.2

0.5

0.2

(0.2)




2405%«H  2405%xH =%
shich can he writt ; —+ thii— :
which can be written as T o = (0.2
| Since all the terms are positive applying AMGM inequality for three positive terms we
get
Sl sl o 3 20PH 2405 H 2 _ v-’z.ms-w
3 -V v 2V 2 a2 | (0.2
The RIIS is a constant. The LHS is always greater or equal to this constant im-
plies that this is the minimum value the LHS can achieve. The minimum is achieved
] B : . T 2405° 7 H
when all the three positive terms are equal, which gives the condition v
w?  (2405)° 7y 2 i
== (=] =2(%] 0.2
I ( R ) H i
For steady state,
o | /24057 N2 ;
1021 x 1977 | {222 4 (%) |2 =sm7x 107 0.
R i ;
(0.5
Hence H = 5.866 m [Acceptable Range (5,870 to 5.850)]
R =3.175 m [Acceptable Range (3.170 to 3.180)]. (0.2)
Note: Putting the condition in the RHS gives the minimum as % From the condi-
o we sot T = 2:408%t 7 52,4054
NS T T ey T TV T
Note: The radius and height of the Tarapur 3 & 4 NR in Western India is 3,192 m and
| 5.940 m respectively.
C2 The fuel channels ave n a square arrangement (Fig-11T) with nearest neighbour distance
(.286 m. The effective radius of a fuel channel (if it were solid) is 3.617 % 10 ? m. Estimate
the number of fuel channels /. in the reactor and the mass A of U0, required to operate
the NR in steady state. [1.0]
Solution: £, = 387 and A = 9892 » 10¢kg. :
Detailed solution: Since the fuel channels are in square pitch of 0.286 m, the ef-
foctive area per channel is 0.286% m? = 8.180 x 1072 m? 0.3
The cross-scctional area of the cove is 7R = 3142 x (3.175)2 = 3167 m” so the
maximum number of fuel channels that can be accommodated in the eylinder iz the
integer part of 2% = 387, 0.4
Mass of the fuel=387x Volume of the rad xdensity
= 387 » (7 % 0.036172 x 5.866) x 10600 = 9.892 x 10%kg. 0.3

-1




= ey P |
| F, = 387 [Acceptable Range (380 to 394)] !
M = 9892 x 10%kg [Aeceplable Range (9.000 to 10.00)]

Note 1: (Not part of grading) The total volume of the fuel is 387 x (7 x 0036172 x
5.866) = 9.332 m®. If the reactor works al 12.5 % efficieny then using the resull of
a-{ili] we have that the power output of the reactor is 9.332 x 4.017 = 10% x 0.125 =
573 MW,

Note 2: The Tarapur 3 & 4 NR in Western India has 392 channels and the mass of the
fuel in it 35 10015 = 10* kg It produces 540 MW of power.

Alternative Solutions to sub-parts B2 and B3: Lot ¢ be the scattering angle of the
Moderator atom in the LI, taken clockwize with respect to the initial direcfion of the neutron
betore collision. Let U7 be the speed of the Moderalor atom, in the LF, alter collision. From
momentum and kinetic conservation in LF we have

Uy vocosly + AU coso, (1)
0 = w,sinfly, — Al sing, {2)
1 1.
J = AT+ 5 ()

Squaring and adding eq{1) and (2) to eliminate & and from eq{3) we get
{1!“‘2 e 'f';f 1

A = _/le-';f - ;‘ﬁc-';f. i4)

2
vy — 2o cos

which gives
LA =2 ;
(A+ Do — (A — 1, (5)
(1) Let v be the speed of the nentron after collision in the COMF. From definition of conter
iy

A4 L

vy sin @y and v, cosfy are the perpendicular and parallel components of v, in the LF, resolved
along the initial direction of the neutron before collision. Transforming these to the COME
gives vy sinfy and v, cosfly, — vy, as the perpendicular and parallel components of v, Substitul-
ing for v, and for 2u,mcosfy, from eq(d) in v = Ju2sin® 0, + v2 cos? 0, + v2 — Zut,, coslly,

. 2 . A,
and simphiving gives v = ——-. Squaring, the componenis of v to Piltmnate 5, gives v’

2 thy Uy COS 9;,

of mass frame v, =

N

w4 d .+ 2wy, cos Substituting for v and v, and simnplifying gives,

v: B, A+ 24cosf+ 1
v B (A+1)2
. E,  A'+1 24 1, ,
Gla,0) = L*_;,, = AT 17 + A3 17 cosf = E[U + ) + (1 — e cosd].
(OR)
(iii) From definition of center of mass frame v,, = f;’ i After the collision, let v and 7

(0.3




be magnitude of the velocities of nentron and maoderator atom respectively in the CONE.
From conservation laws in the COME,

) 1 s 1., 1, 1. .
U= A‘i Elll(l E{'I’.',l_i Um}' - 'é'.‘"h-'m = E?,' e EAL %

Solving gives v ,-‘L%‘T and V¥V = TLr—T We also have veos# = v, cosdp — vy, substituting for o,

and for v, cosf; from eq(5) and simplifying sives
v B, A'+24Acosé+ 1

B (A+1p
= ; Ey A2+ 1 24 K :
Gla, ) = B - ATIe + A+ 1) vosf = fz-\l:l + o) + (1 — o) cozb].
(OR)
{(iv) From definition of center of mass frame 1, {UT T After the collision. let v and V

b magnitude of the velocities of neutron and moderalor atom respectively in the COME,
From conservation laws in the COMF,

1 st L 1, 1, .
o= A ‘rl]'ll;l G{v& — }— I 5.4_-1':#? = 61"_’ B S-AIV EI
Solving gives v = ﬁj and V' = % Using and Ucose are the perpendicular and parallel

components of U7, in the LT, resolved along the initial direction of the neutron before collision.
Transforming these to the COME gives Usineg and —U cosa + 1, as the perpendicular and
parallel components of V. So we get U2 = Vsin® 0+ V% cos? 0+v2 — 2V, cosfl. Since V = v,
we get 72 = 202 (1 — cos#). Substituting for U7 from eq(4) and simplifving gives

Lir)

vi By, AT+ 24cosd+1
vi o Ee (A+1)2
E A%+ 1 24 1
;r = :..'—&z it < ____.._____---92_."]_5__\, '|_ _‘l,. . :
Gla.0) B, A+1P | (A1 2[k o)+ (1 —a) cosd]

Note: We have v, = T . Substituting for v, v, v, inveosd = v, cosf—v,,
A
gives the relation between dp and 8.

Avostd + 1
Costp = —— S
AT+ 2 cosd + ]
Treating the ahave equation as gquadratic in eos# gives.
—sin® @, £eds b A2 - sin® )
For ;= 07 the oot with the negative sign gives @ = 180° which is not correct so.

cos 0/ A% — sin® 0 — sin®d;

cozfl =

cosfl = 1
5
Substituting the above expression for cos¢ in the cxpression for :; gives an expression in terms
of cosfl; ‘
v’ _ By A2 + 2cos B/ A% — sin® 8, + cos 20,
ol By (A+1) '




