Problem 3 : Solution/marking scheme - Large Hadron Collider (10 points)
Part A. LHC Accelerator (6 points)

A1 (0.7 pt) Find the exact expression for the final velocity v of the protons as anction of the accelerating voltage V, and fundamental constants.

Solution A1:

Conservation of energy:

$$
m_{p} \cdot c^{2}+V \cdot e=m_{p} \cdot c^{2} \cdot \gamma=\frac{m_{p} \cdot c^{2}}{\sqrt{1-v^{2} / c^{2}}}
$$

Penalties

> No or incorrect total energy

$$
V \cdot e \simeq m_{p} \cdot c^{2} \cdot \gamma=\frac{m_{p} \cdot c^{2}}{\sqrt{1-v^{2} / c^{2}}}
$$

Solve for velocity:

$$
v=c \cdot \sqrt{1-\left(\frac{m_{p} \cdot c^{2}}{m_{p} \cdot c^{2}+V \cdot e}\right)^{2}}
$$

without proton rest mass:

Classical solution:

A2 (0.8 pt) For particles with high energy and low rest mass the relative deviation $\Delta=(c-v) / c$ of the final velocity v from the speed of light is very small. Find a suitable approximation for Δ and calculate Δ for electrons with an energy of 60.0 GeV .

Solution A2:

velocity (from previous question):

$$
v=c \cdot \sqrt{1-\left(\frac{m_{e} \cdot c^{2}}{m_{e} \cdot c^{2}+V \cdot e}\right)^{2}} \text { or } c \cdot \sqrt{1-\left(\frac{m_{e} \cdot c^{2}}{V \cdot e}\right)^{2}}
$$

relative difference:

$$
\begin{gathered}
\Delta=\frac{c-v}{c}=1-\frac{v}{c} \\
\rightarrow \Delta \simeq \frac{1}{2}\left(\frac{m_{e} \cdot c^{2}}{m_{e} \cdot c^{2}+V \cdot e}\right)^{2} \text { or } \frac{1}{2}\left(\frac{m_{e} \cdot c^{2}}{V \cdot e}\right)^{2}
\end{gathered}
$$

relative difference

$$
\Delta=3.63 \cdot 10^{-11}
$$

A3 (1.0 pt) Derive an expression for the uniform magnetic flux density B necessary to keep the proton beam on a circular track. The expression should only contain the energy of the protons E, the circumference L, fundamental constants and numbers. You may use suitable approximations if their effect is smaller than the precision given by the least number of significant digits. Calculate the magnetic flux density B for a proton energy of $E=7.00 \mathrm{TeV}$.

Solution A3:

Balance of forces:

$$
\frac{\gamma \cdot m_{p} \cdot v^{2}}{r}=\frac{m_{p} \cdot v^{2}}{r \cdot \sqrt{1-\frac{v^{2}}{c^{2}}}}=e \cdot v \cdot B
$$

A4 (1.0 pt) An accelerated charged particle radiates energy in the form of electromagnetic waves. The radiated power $P_{r a d}$ of a charged particle that circulates with a constant angular velocity depends only on its acceleration a, its charge q, the speed of light c and the permittivity of free space ϵ_{0}. Use a dimensional analysis to find an expressiōn for the radiated power $P_{r a d}$.

Solution A4:

Ansatz:

$$
P_{\text {rad }}=a^{\alpha} \cdot q^{\beta} \cdot c^{\gamma} \cdot \epsilon_{0}^{\delta}
$$

Dimensions: $[\mathrm{a}]=\mathrm{ms}^{-2},[\mathrm{q}]=\mathrm{C}=\mathrm{As},[\mathrm{c}]=\mathrm{ms}^{-1},\left[\epsilon_{0}\right]=\mathrm{As}(\mathrm{Vm})^{-1}=\mathrm{A}^{2} \mathrm{~s}^{2}\left(\mathrm{Nm}^{2}\right)^{-1}=\mathrm{A}^{2} \mathrm{~s}^{4}\left(\mathrm{kgm}^{3}\right)^{-1}$
if dimensions: N and Coulomb $\left[\epsilon_{0}\right]=\mathrm{C}^{2}\left(\mathrm{Nm}^{2}\right)^{-1}$

$$
0 \frac{\mathrm{~m}^{\alpha}}{\mathrm{s}^{2 \alpha}} \cdot \mathrm{C}^{\beta} \cdot \frac{\mathrm{m}^{\gamma}}{\mathrm{s}^{\gamma}} \cdot \frac{\mathrm{C}^{2 \delta}}{\mathrm{~N}^{\delta} \cdot \mathrm{m}^{2 \delta}}=\frac{\mathrm{N} \cdot \mathrm{~m}}{\mathrm{~s}}
$$

From this follows;

$$
\mathrm{N}: \rightarrow \delta \Rightarrow-1, \quad \mathrm{C}: \rightarrow \beta+2 \cdot \delta=0, \quad \mathrm{~m}: \rightarrow \alpha+\gamma-2 \delta=1, \quad \mathrm{~s}: \rightarrow 2 \cdot \alpha+\gamma=1
$$

Two equations correct

And therefore:

$$
\rightarrow \alpha=2, \beta=2, \gamma=-3, \delta=-1
$$

And therefore:

$$
\rightarrow \alpha=2, \beta=2, \gamma=-3, \delta=-1
$$

From this follows:
$\mathrm{kg}: \rightarrow \delta=-1, \quad \mathrm{~A}: \rightarrow \beta+2 \cdot \delta=0, \quad \mathrm{~m}: \rightarrow \alpha+\gamma-3 \delta=2, \quad \mathrm{~s}: \rightarrow-2 \cdot \alpha+\beta-\gamma+4 \delta=-3$

And therefore:

Radiated Power:

$$
P_{r a d} \propto \frac{a^{2} \cdot q^{2}}{c^{3} \cdot \epsilon_{0}}
$$

Other solutions with other units are possible and are accepted No solution but realise that unit of charge must vanish $\beta=2 \delta$

A5 (1.0 pt) Calculate the total radiated power $P_{\text {tot }}$ of the LHC for a proton energy of $E=7.00 \mathrm{TeV}$ (Note table 1). You may use appropriate approximations.

Solution A5:

Radiated Power:

$$
P_{r a d}=\frac{\gamma^{4} \cdot a^{2} \cdot e^{2}}{6 \pi \cdot c^{3} \cdot \epsilon_{0}}
$$

Energy:

$$
E=(\gamma-1) m_{p} \cdot c^{2} \text { or equally valid } E \simeq \gamma \cdot m_{p} \cdot c^{2}
$$

Acceleration:

$$
a \simeq \frac{c^{2}}{r} \text { with } r=\frac{L}{2 \pi}
$$

Therefore:
$\rightarrow \geqslant$

$$
P_{r a d}=\left(\frac{E}{m_{p} c^{2}}+1\right)^{4} \cdot \frac{e^{2} \cdot c}{6 \pi \epsilon_{\theta} \cdot r^{2}} \quad \text { or }\left(\frac{E}{m_{p} c^{2}}\right)^{4} \cdot \frac{e^{2} \cdot c}{6 \pi \epsilon_{0} \cdot r^{2}}
$$

$$
\left(\text { not required } P_{r a d}=7.94 \cdot 10^{-12} \mathrm{~W}\right)
$$

penalty for missing factor 2 (for the two beams): $\mathbf{- 0 . 1}$
penalty for wrong numbers 2808 and/or $1.15 \cdot 10^{11}$ (numbers come from table 1): -0.1

A6 (1.5 pt) Determine the time T that the protons need to pass through this field.

Solution A6:

2nd Newton's law

$$
F=\frac{d p}{d t} \quad \text { leads to }
$$

$$
\begin{equation*}
\frac{V \cdot e}{d}=\frac{p_{f}-p_{i}}{T} \text { with } p_{i}=0 \tag{B}
\end{equation*}
$$

$+$

Conservation of energy:

$$
E_{t o t}=m \cdot c^{2}+e \cdot V
$$

Since

$$
\begin{gathered}
E_{t o t}^{2}=\left(m \cdot c^{2}\right)^{2}+\left(p_{f} \cdot c\right)^{2} \\
\rightarrow p_{f}=\frac{1}{c} \cdot \sqrt{\left(m \cdot c^{2}+e \cdot V\right)^{2}-\left(m \cdot c^{2}\right)^{2}}=\sqrt{2 e \cdot m \cdot V+\left(\frac{e \cdot V}{c}\right)^{2}} \\
\rightarrow T=\frac{d \cdot p_{f}}{V \cdot e}=\frac{d}{V \cdot e} \sqrt{2 e \cdot m_{p} \cdot V+\left(\frac{e \cdot V}{c}\right)^{2}} \\
T=218 \mathrm{~ns}
\end{gathered}
$$

Alternative solution
2nd Newton's 4aw

$$
\begin{gathered}
F=\frac{d p}{d t} \text { leads to } \\
\frac{V \cdot e}{d}=\frac{p_{f}-p_{i}}{T} \text { with } p_{i}=0
\end{gathered}
$$

Alternative solution: integrate time

Energy increases linearly with distance x

$$
\begin{gathered}
E(x)=\frac{e \cdot V \cdot x}{d} \\
t=\int d t=\int_{0}^{d} \frac{d x}{v(x)} \\
v(x)=c \cdot \sqrt{1-\left(\frac{m_{p} \cdot c^{2}}{\left.m_{p} \cdot c^{2}+\frac{e \cdot V \cdot x}{d}\right)^{2}}=c \cdot \frac{\sqrt{\left(m_{p} \cdot c^{2}+\frac{e \cdot V^{2} x}{d}\right)^{2}-\left(m_{p} \cdot c^{2}\right)^{2}}}{m_{p} \cdot c^{2}+\frac{e \cdot V \cdot x}{d}}\right.} \\
=c \cdot \frac{\sqrt{\left(1+\frac{e \cdot V \cdot x}{d \cdot m_{p} \cdot c^{2}}\right)^{2}}-1}{1+\frac{e \cdot V \cdot x}{d \cdot m_{p} \cdot c^{2}}}
\end{gathered}
$$

$$
\text { Substitution : } \xi=\frac{e \cdot V \cdot x}{d \cdot m_{p} \cdot c^{2}} \quad \frac{d \xi}{d x}=\frac{e \cdot V}{d \cdot m_{p} \cdot c^{2}}
$$

$$
\rightarrow t=\frac{1}{c} \int_{0}^{b} \frac{1+\xi}{\sqrt{(1+\xi)^{2}-1}} \frac{d \cdot m_{p} \cdot c^{2}}{e \cdot V} d \xi \quad b=\frac{e \cdot V}{m_{p} \cdot c^{2}}
$$

$$
1+\xi:=\cosh (s) \quad \frac{d \xi}{d s}=\sinh (s)
$$

$$
t=\frac{m_{p} \cdot c \cdot d}{e \cdot V} \int \frac{\cosh (s) \cdot \sinh (s) d s}{\sqrt{\cosh ^{2}(s)-1}}=\frac{m_{p} \cdot c \cdot d}{e \cdot V}[\sinh (s)]_{b_{1}}^{b_{2}}
$$

$$
\text { with } \quad b_{1}=\cosh ^{-1}(1), \quad b_{2}=\cosh ^{-1}\left(1+\frac{e \cdot V}{m_{p} \cdot c^{2}}\right)
$$

Alternative: differential equation

$$
\begin{gathered}
F=\frac{\mathrm{d} p}{\mathrm{~d} t} \\
\rightarrow \frac{V \cdot e}{d}=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{m \cdot v}{\sqrt{1-\frac{v^{2}}{c^{2}}}}\right)=\frac{m \cdot a\left(1-\frac{v^{2}}{c^{2}}\right)+m \cdot a \frac{v^{2}}{c^{2}}}{\left(1-\frac{v^{2}}{c^{2}}\right)^{\frac{3}{2}}}=\gamma^{3} \cdot m \cdot a \\
a=\ddot{s}=\frac{V \cdot e}{d \cdot m}\left(1-\frac{\dot{s}^{2}}{c^{2}}\right)^{\frac{3}{2}}
\end{gathered}
$$

Ansatz : $s(t)=\sqrt{i^{2} \cdot t^{2}+k}-l$ with boundary conditions $s(0)=0, v(0)=0$

$$
\begin{gathered}
\rightarrow s(t)=\frac{c}{V \cdot e}\left(\sqrt{e^{2} \cdot V^{2} \cdot t^{2}+c^{2} \cdot m^{2} \cdot d^{2}}-c \cdot m \cdot d\right) \\
\\
s=d \rightarrow T=\frac{d}{V \cdot e} \sqrt{\left(\frac{V \cdot e}{c}\right)^{2}+2 V \cdot e \cdot m}
\end{gathered}
$$

$$
T=218 \mathrm{~ns}
$$

[0.4]

$$
F=\frac{V \cdot e}{d} \rightarrow \text { acceleration } a=\frac{F}{m_{p}}=\frac{V \cdot e}{m_{p} \cdot d}
$$

And hence for the time

$$
d=\frac{1}{2} \cdot a \cdot T^{2} \rightarrow T=\sqrt{\frac{2 d}{a}}
$$

$$
\begin{gathered}
T=d \cdot \sqrt{\frac{2 \cdot m_{p}}{V \cdot e}} \\
T=194 \mathrm{~ns}
\end{gathered}
$$

05

Part B. Particle identification (4 points)

B1 (0.8 pt) Express the particle rest mass m in terms of the momentum p, the flight length l and the flight time t assuming that the particles with elementary charge e travel with velocity close to c on straight tracks in the ToF detector and that it travels perpendicular to the two detection planes (see Figure 2).

Solution B1:

with velocity

$$
v=\frac{l}{t}
$$

Alternative

$$
m=\frac{p \cdot t}{l} \cdot \sqrt{1-\frac{l^{2}}{t^{2} \cdot c^{2}}}=\frac{p}{l \cdot c} \cdot \sqrt{t^{2} \cdot c^{2}-l^{2}}
$$

with flight distance: l, flight time t gets:

$$
p=\frac{m \cdot \beta \cdot c}{\sqrt{1-\beta^{2}}}
$$

therefore the velocity:

$$
\beta=\frac{p}{\sqrt{m^{2} \cdot c^{2}+p^{2}}}
$$

insert into the expression for t :

B2 (0.7 pt) Calculate the minimal length of a ToF detector that allows to safely distinguish a charged kaon from a charged pion given both their momenta are measured to be $1.00 \mathrm{GeV} / \mathrm{c}$. For a good separation it is required that the difference in the time-of-flight is larger than three times the time resolution of the detector. The typical resolution of a ToF detector is $150 \mathrm{ps}\left(1 \mathrm{ps}=10^{-12} \mathrm{~s}\right)$.

Solution B2:

Flight time difference between kaon and pion

$$
\Delta t=450 \mathrm{ps}=450 \cdot 10^{-12} \mathrm{~s}
$$

Flight time difference between kaon and pion

$$
\begin{gathered}
\Delta t=\frac{l}{c p}\left(\sqrt{m_{\pi}^{2} \cdot c^{2}+p^{2}}-\sqrt{m_{K}^{2} \cdot c^{2}+p^{2}}\right)=450 \mathrm{ps}=450 \cdot 10^{-12} \mathrm{~s} \\
\rightarrow l=\frac{\Delta t \cdot p}{\sqrt{m_{K}^{2}+p^{2} / c^{2}}-\sqrt{m_{\pi}^{2}+p^{2} / c^{2}}} \\
\sqrt{m_{K}^{2}+p^{2} / c^{2}}=1.115 \mathrm{GeV} / c^{2} \mathrm{and} \sqrt{m_{\pi}^{2}+p^{2} / c^{2}}=1.010 \mathrm{GeV} / c^{2} \\
l=450 \cdot 10^{-12} \cdot \frac{1}{1.115-1.010} \mathrm{~s} \mathrm{GeV} c^{2} /(\mathrm{GeV} c) \\
l=4285.710^{-12} \mathrm{~s} \cdot c=4285.7 \cdot 10^{-12} \cdot 2.998 \cdot 10^{8} \mathrm{~m}=1.28 \mathrm{~m}
\end{gathered}
$$

Penalty for <2 or >4 significant digits

Non-relativistic solution:

\qquad
,
Flight time difference between kaon and pion

$$
\Delta t=\frac{l}{p}\left(m_{K}-m_{\pi}\right)=450 p \mathrm{~s}=450 \cdot 10^{-12} \mathrm{~S}
$$

length:

$$
l=\frac{\Delta t p}{m_{K}-m_{\Pi}}=\frac{450 \cdot 10^{-12} \mathrm{~s} \cdot 1 \mathrm{GeV} / c}{(0.498-0.135) \mathrm{GeV} / c^{2}}
$$

$$
l=450 \cdot 10^{-12} / 0.363 \cdot c s=450 \cdot 10^{-12} / 0.363 \cdot 2.998 \cdot 10^{8} \mathrm{~m}
$$

$$
l=3716 \cdot 10^{-4} \mathrm{~m}=0.372 \mathrm{~m}
$$

Penalty for <2 or >4 significant digits

B3 (1.7 pt) Express the particle mass as a function of the magnetic flux density B, the radius R of the ToF tube, fundamental constants and the measured quantities: radius r of the track and time-of-flight t.

Solution B3:

Particle is travelling perpendicular to the beam line hence the track length is given by the length of the arc
Lorentz force \rightarrow transverse momentum, since there is no longitudinal momentum, the momentum is the same as the transverse momentum
Use formula from B1 to calculate the mass
track length: length of arc

$$
l=2 \cdot r \cdot \operatorname{asin} \frac{R}{2 \cdot r}
$$

$$
\text { penalty for just taking a straight track }(l=R)
$$

partial points for intermediate steps, maximum 0.4
Lorentz force

$$
\frac{\gamma \cdot m \cdot v_{t}^{2}}{r}=e \cdot v_{t} \cdot B \rightarrow p_{T}=r \cdot e \cdot B
$$

partial points for intermediate steps, maximum 0.3
longitudinal momentum $=0 \Rightarrow p=p_{T}$
momentum

$$
p=e \cdot r \cdot B
$$

0.1

$$
m=\sqrt{\left(\frac{p \cdot t}{l}\right)^{2}-\left(\frac{p}{c}\right)^{2}}=e \cdot r \cdot B \cdot \sqrt{\left(\frac{t}{\left.2 r \cdot \operatorname{asin} \frac{R}{2 r}\right)}\right)^{2}-\left(\frac{1}{c}\right)^{2}}+
$$

partial points for intermediate steps, maximum 0.5

Non-relativistic: track length; length of arc

$$
l=2 \cdot r \cdot \operatorname{asin} \frac{R}{2 \cdot r}
$$

penalty for just taking a straight track $(l=R)$
partial points for intermediate steps, maximum 0.4

$$
m=\frac{p \cdot t}{l}=\frac{e \cdot r \cdot B \cdot t}{2 r \cdot \operatorname{asin} \frac{R}{2 r}}=\frac{e \cdot B \cdot t}{2 \cdot \operatorname{asin} \frac{R}{2 r}}
$$

partial points for intermediate steps, maximum 0.3

B4 (0.8 pt) Identify the four particles by calculating their mass.

Particle	Radius r [m]	Time of flight [ns]
A	5.10	20
B	2.94	14
C	6.06	18
D	2.32	25

Solution B4:

Particle	$\begin{aligned} & \operatorname{arc} \\ & {[\mathrm{m}]} \end{aligned}$	$\begin{gathered} \mathrm{p} \\ {\left[\frac{M e V}{c}\right]} \end{gathered}$	$\begin{gathered} \mathrm{p} \\ {\left[\frac{\mathrm{mkg}}{\mathrm{~s}}\right]} \\ 10^{-19} \end{gathered}$	$\left\lvert\, \begin{gathered} \mathrm{pt} / \mathrm{l} \\ {\left[\frac{\mathrm{MeVs}}{\mathrm{~cm}}\right]} \\ 10^{-6} \end{gathered}\right.$	$\begin{gathered} \mathrm{pt} / \mathrm{l} \\ {\left[\frac{\mathrm{MeV}}{\mathrm{c}^{2}}\right]} \end{gathered}$	$\begin{gathered} \mathrm{pt} / \mathrm{l} \\ {[\mathrm{~kg}]} \\ 10^{-27} \end{gathered}$	$\begin{gathered} \text { Mass } \\ {\left[\frac{M e V}{c^{2}}\right]} \end{gathered}$	$\begin{gathered} \text { Mass } \\ {[\mathrm{kg}]} \\ 10^{-27} \end{gathered}$
A	3.786	764.47	4.0855	4.038	1210.6	2.158	938.65	1.673
B	4.002	440.69	2.3552	1.542	462.2	0.824	139.32	0.248
C	3.760	908.37	4.8546	4.349	1303.7	2.32	935.10	1.667
D	4.283	347.76	1.8585	2.030	608.6	1.08	499.44	0.890

Particles A and C are protons, B is a Pion and D a Kaon correct mass and identification: per particle
penalty for correct mass but no or wrong identification for 1 or 2 particles penalty for correct mass but no or wrong identification for 3 or 4 particles
wrong mass, correct momentum:per particle wrong momentum, correct arc for 3 or 4 particles wrong momentum, correct arc for 1 or 2 particles
non relativistic solution $m=p t / l$ Particle identification is not possible

Particle	$\begin{aligned} & \text { arc } \\ & {[\mathrm{m}]} \end{aligned}$	$\begin{gathered} p \\ {\left[\frac{M e V}{c}\right]} \end{gathered}$	$\begin{gathered} p \\ {\left[\frac{m k g}{s}\right]} \\ 10^{-19} \end{gathered}$	$\begin{gathered} m=p \cdot t / l \\ {\left[\frac{M e V s}{c m}\right]} \\ 10^{-6} \end{gathered}$	$\begin{gathered} m=p \cdot t \\ {\left[\frac{M e V}{c^{2}}\right]} \end{gathered}$	$\begin{aligned} & =p \cdot t / l \\ & {[\mathrm{~kg}]} \\ & 10^{-27} \end{aligned}$
A	3.786	764.47	4.0855	4.038	1210.6	2.158
B	4.010	440.69	2.3552	1.542	* 462.2	0.824
C	3.760	908.37	4.8546	4.349	1303.7	2.324
D	4.283	347.76	1.8585	2.030	608.6	1.085

correct mass or correct momentum: per particle wrong momentum, correct arc for 3 or 4 particles wrong momentum, correct arc for 1 or 2 particles

