Experimental Question

## Parallel Dipole Line Magnetic Trap for Earthquake \& Volcanic Sensing (10 points)

## A. BASIC CHARACTERISTICS OF PDL TRAP

## 1. Determination of the magnet's magnetization (M) ( 2.5 pts )

| Quest ion |  |  |  | swer |  |  | Marks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { A. } 1 \\ & 0.1 \\ & \text { pts } \end{aligned}$ | Record zero offset ( $\mathrm{B}_{0}$ ) of the Teslameter without any magnet nearby. Subtract subsequent field measurement with this value <br> Example from a Teslameter unit: $B_{0}=0.86 \mathrm{mT}$ |  |  |  |  |  | 0.08 pts range $(-10 \mathrm{mT}$ to 10 mT ) <br> Correct unit: 0.02 pts |
| $\begin{gathered} \text { A. } 2 \\ 1.15 \\ \text { pts } \end{gathered}$ | Measur $\leq 16 \mathrm{~m}$ the ma $x_{0}=4 \mathrm{r}$ <br> Braw - <br> Plot: | magnetic Where t. Reco <br> $B_{0}=0$. <br> X <br> (mm) <br> 7 <br> 8 <br> 9 <br> 10 <br> 11 <br> 12 <br> 13 <br> 14 <br> 16 <br>  | ield B vs. is the po and plot mT. $\Delta x$ Braw (T) | $x$ in the $n$ ion meas our result measure <br> B <br> (T) <br> 0.0312 <br> $\mathrm{y}=a+$ $a$ $b$ <br> $\begin{array}{cc} & -1 \\ -4.6 & -4.4\end{array}$ <br> (x) $(x$ in m$)$ | ar field re red from on the an <br> from sur | gion ( $7 \leq x$ the center of wer sheet. <br> ace. $B=$ | Correct label and unit for data: 0.1 pts <br> Number of correct data for $x<=16 \mathrm{~mm}$ : 0.05 pts for each correct data, max 0.45 pts <br> Plot: <br> -Correct axis label and unit: 0.05 pts <br> - Using around 75\% of plot area: 0.05 pts <br> -For each correct data point: 0.05 pts , max. 0.4 pts <br> -Adding trendline: 0.1 pts |


| $\begin{gathered} \hline \text { A. } 3 \\ 0.75 \\ \text { pts } \end{gathered}$ | Use your experimental data to determine the value of the exponent $p$. <br> Linear regression (LR) $y=a+b x: B=\frac{\mu_{0} m}{2 \pi L} \frac{1}{x^{p}}$ <br> $\ln (B)=a-p \ln x \quad$ where $a=\ln \left(\frac{\mu_{0} m}{2 \pi L}\right)$. <br> LR yields : $a=-11.765$ and $b=-1.997$ <br> The power exponent: $p=-b=2.0$ <br> Note that this is in very good agreement with the exact result: at short distance $(x<L)$ a diametric (or a dipole line) magnet has $B \sim 1 / r^{2}$ dependence. See Ref. [1], Fig. 2c. | Obtaining $p$ from graph: 0.05 pts Obtaining $p$ from linear regression: 0.1 pts <br> Result: $\begin{aligned} & p=1.8-2.2: 0.65 \mathrm{pts} \\ & p=1.6-2.4: 0.35 \mathrm{pts} \end{aligned}$ <br> Result with wrong sign: $\begin{aligned} & p=(-1.8)-(-2.2): 0.4 \mathrm{pts} \\ & p=(-1.6)-(-2.4): 0.1 \mathrm{pts} \end{aligned}$ <br> More than two sig. figs.: minus 0.05 pts |
| :---: | :---: | :---: |
| $\begin{gathered} \text { A. } 4 \\ 0.5 \\ \text { pts } \end{gathered}$ | Determine the magnet's magnetization M. $\begin{aligned} & m=\frac{2 \pi L}{\mu_{0}} \exp (a)=0.987 \mathrm{Am}^{2} \\ & M=\frac{m}{\pi R^{2} L}=1.2 \times 10^{6} \mathrm{~A} / \mathrm{m} \end{aligned}$ <br> This is close to the more accurate results from more extensive measurements to far field (see Ref. [1], Fig. 2c) and we use this value for subsequent questions: $M=1.1 \times 10^{6} \mathrm{~A} / \mathrm{m}$ | Correct unit: 0.05 pts <br> Obtaining intercept (a) from graph: 0.025 pts Obtaining intercept from LR: 0.05 pts <br> Correct formula for $m$ and/or $M$ : 0.1 pts $\begin{aligned} & \text { Result for } M\left(\times 10^{6} \mathrm{~A} / \mathrm{m}\right) \text { : } \\ & 0.9-1.4: 0.3 \mathrm{pts} \\ & 0.1-2.5: 0.15 \mathrm{pts} \end{aligned}$ <br> More than 2 sig. figs.: minus 0.05 pts |

## 2. The Magnetic Levitation Effect and Magnetic Susceptibility ( $\chi$ ) (1 pts)

| Quest ion | Answer | Marks |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { A. } 5 \\ & 0.1 \\ & \text { pts } \end{aligned}$ | Place gently a graphite rod $H B / 0.5$ and length $=8 \mathrm{~mm}$. Measure the levitation height yo of the rod (see Fig. 7a). Hint: Use the insert ruler provided as shown in Fig. 7b. Press the ruler on the magnets to read the position of the graphite rod <br> We levitate graphite $\mathrm{HB} / 0.5, l=8 \mathrm{~mm}$. Using the insert-ruler, we measure approximately $\Delta y=1 \mathrm{~mm}$ from the top of the magnet surface. Thus: $y_{0}=R-\Delta y=(3.2-1) \mathrm{mm}=2.2 \mathrm{~mm}$ | correct unit: 0.02 $\begin{aligned} & \begin{array}{l} y_{0}=(1.7-2.2) \mathrm{mm}: 0.08 \\ \text { pts } \end{array} \end{aligned}$ <br> partial credit: <br> Only $\Delta y=(1-1.5) \mathrm{mm}$ : <br> 0.03 pts |


| $\begin{aligned} & \text { A. } 6 \\ & 0.8 \\ & \text { pts } \end{aligned}$ | Use the result from part A. 5 to determine the magnetic susceptibility $\chi$ of the graphite rod. <br> Solving for $\chi$ : $\begin{gathered} m g=F_{y}=-\frac{\mu_{0} M^{2} \chi V_{R}}{2} \frac{R^{4}}{a^{5}} f_{Y}\left(y_{0} / a\right) \\ \chi=-\frac{2 \rho g a^{5}}{\mu_{0} M^{2} R^{4} f_{Y}\left(y_{0} / a\right)} \end{gathered}$ <br> We calculate: $a=R+g_{M} / 2=(3.2+1.5 / 2) \mathrm{mm}=3.95 \mathrm{~mm}$. <br> Using $\mathrm{y}_{0}=2.2 \mathrm{~mm}: \quad f_{Y}(u)=\frac{4 u\left(3-u^{2}\right)\left(1-u^{2}\right)}{\left(1+u^{2}\right)^{5}}$, $f_{Y}\left(y_{0} / a\right)=f_{Y}(2.2 / 3.95)=1.07$ <br> Using the correct $M=1.1 \times 10^{6} \mathrm{~A} / \mathrm{m}$; and $R=3.2 \mathrm{~mm}, \rho=$ $1680 \mathrm{~kg} / \mathrm{m}^{3}$ we have: $\chi=-1.85 \times 10^{-4}$. <br> Note that this is very good agreement with the literature value for graphite pencil lead: $\chi=-2 \times 10^{-4}$ (see Ref.[1], pg. $2 \&$ Ref.[2]). The sign is negative indicating a diamagnetic material. | Correct expression for $\chi$ : 0.4 pts <br> Result for $\chi\left(\mathrm{x}_{10} 0^{-4}\right)$ <br> -(1.4 to 2.6) : 0.4 pts <br> -(0.5 to 4) : 0.2 pts <br> Wrong sign: minus 0.1 pts |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { A. } 7 \\ & 0.1 \\ & \text { pts } \end{aligned}$ | What kind of magnetic material is graphite? Choose one: (i) Ferromagnetic; (ii) Paramagnetic; or (iii) Diamagnetic? <br> (iii) Diamagnetic. Because: <br> (1) Graphite is repelled by magnetic field <br> (2) The sign of $\chi$ is negative. | Correct choice: 0.1 pts |

3. The camelback potential oscillation and magnetic susceptibility $(\chi)$ (1 points)



## 4. Oscillator quality factor $(Q)$ and estimate of air viscosity $\mu_{\underline{A}}$ ( 3.0 points)

| Quest ion | Answer | Marks |
| :---: | :---: | :---: |
| $\begin{gathered} \text { A. } 10 \\ 0.5 \\ \text { pts } \end{gathered}$ | We need to determine the damping time constant of the oscillation $\tau$. Sketch how you measure $\tau$ in a simple way . <br> (a) <br> (b) <br> The trick is to use "half-time" concept of exponential decay. We set the oscillation and measure the time taken for the amplitude to halve. The lifetime is: $\tau=\frac{\Delta t_{1 / 2}}{\ln 2}$ | Correct idea: 0.3 pts <br> Correct expression for $\tau$ : 0.2 pts |
| $\begin{gathered} \text { A. } 11 \\ 1.5 \\ \text { pts } \\ \hline \end{gathered}$ | Perform oscillation damping experiments with a group of rods with various diameters and fixed length of 8 mm . Determine the damping time constant $\tau$ for each rods | Correct label and unit 0.1 <br> Number of correct data |

Experimental
Question

|  | We displaced the graphite by $\sim 4 \mathrm{~mm}$, started the stopwatch and then waited until it decays to half. |  |  |  |  |  |  | for each diameter (4): <br> $<3: 0.1 \mathrm{pts}$ <br> $>=3: 0.25 \mathrm{pts}$ <br> (max 1.0 pts ) <br> Positive monotonic trend for $\tau$ vs. diameter from 0.3 to 0.9 mm with $\tau=5$ to $20 \mathrm{sec}: 0.4 \mathrm{pts}$ <br> Correct unit: 0.05 <br> Obtaining result with linear regression or plot: 0.25 pts <br> Result $\mu_{\mathrm{A}}\left(\mathrm{x} 10^{-6} \mathrm{Pa.s}\right)$ : 20-60:0.7 pts $10-80: 0.4 \mathrm{pts}$ <br> 1-100: 0.1 pts |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Trial | Diam. | Actual <br> Radius | $\Delta t_{1 / 2}$ | Mean <br> $\Delta t_{1 / 2}$ | $\tau$ | $r^{2} \times \ln (0.607$ <br> 1/r) |  |
|  |  | (mm) | (mm) | (s) | (s) | (s) | $\left(\mathrm{mm}^{2}\right)$ |  |
|  | 1 | 0.3 | 0.19 | 3.89 | 3.913 | 5.646 | 0.117 |  |
|  |  |  |  | 3.97 |  |  |  |  |
|  |  |  |  | 3.88 |  |  |  |  |
|  | 2 | 0.5 | 0.28 | 7.69 | 7.617 | 10.989 | 0.224 |  |
|  |  |  |  | 7.57 |  |  |  |  |
|  |  |  |  | 7.59 |  |  |  |  |
|  | 3 | 0.7 | 0.35 | 8.77 | 8.82 | 12.73 | 0.322 |  |
|  |  |  |  | 8.81 |  |  |  |  |
|  |  |  |  | 8.88 |  |  |  |  |
|  | 4 | 0.9 | 0.45 | 12.4 | 11.70 | 16.88 | 0.482 |  |
|  |  |  |  | 11.33 |  |  |  |  |
|  |  |  |  | 11.38 |  |  |  |  |
| $\begin{aligned} & \hline \text { A. } 12 \\ & 1 \text { pts } \end{aligned}$ | Determine the air viscosity $\mu_{A}$ <br> Diameter Variation of Damping Constant <br> We have: $\tau=b r^{2} \ln \left(0.607 \times \frac{l}{r}\right)$, where: $\quad b=\frac{2}{3} \frac{\rho}{\mu_{A}}$. We performed linear regression $y=a+b x$, with $y=\tau$ and $x=r^{2} \ln \left(0.607 \times \frac{l}{r}\right)$. We obtain: $b=29.02 \mathrm{~s} / \mathrm{mm}^{2}$. $\mu_{A}=\frac{2}{3} \frac{\rho}{b}=38.610^{-6} \mathrm{~Pa} . \mathrm{s} \quad(1 \mathrm{~Pa} . \mathrm{s}=1 \mathrm{~kg} / \mathrm{m} \mathrm{~s})$ <br> Note that this is about 2.1 x the actual viscosity of air of $18.2 \mu$.Pa.s. The discrepancy is due to the ellipsoidal |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

approximation of the Stokes drag (vs. the actual cylindrical shape of the rod) and the proximity effect of the rod to the magnet (wall effect). Another factor is the crude nature of our manual $\tau$ determination. See Ref. [1], pg. 8.

## B. SENSOR APPLICATION OF THE PDL TRAP

## 5. PDL Trap Seismometer ( 0.5 pts )

| $\begin{array}{c}\text { Quest } \\ \text { ion }\end{array}$ | Answer | Marks |
| :---: | :--- | :--- |
| B.1 | Which diameter of rod do you choose? | Correct answer: 0.2 pts |
| 0.2 |  |  |
| pts |  |  | \(\left.\begin{array}{l}To obtain the lowest acceleration noise floor " a_{n} " we should <br>

choose the largest diameter graphite i.e. 0.9 \mathrm{~mm} , because their <br>
damping time is the longest and the mass is the largest.\end{array}\right]\).

## 6. PDL Trap Tiltmeter (2 pts)

| Quest <br> ion | Answer | Marks |
| :---: | :--- | :--- |
|  | Derive the relation theoretically between displacement $\Delta z$ with <br> B.3 screw thread size S and the number of turns $(N)$. | Correct expression: <br> 0.5 <br> pts |
| $k_{z} \Delta z=m g \sin \theta=m g N S / D \quad \Delta z=\frac{m g S N}{k_{z} D}$ | 0.5 pts |  |
|  | From Question 3, we also have $\quad k_{z}=m \omega^{2}:$ <br> $\Delta z=\frac{g S}{\omega^{2} D} N$ | Partial credit <br> $k_{z} \Delta z=m g \sin \theta: 0.2$ |
| B.4 | By turning the screw slowly, determine the rod displacement <br> 1.25 <br> pts vs. the number of screw turns (N). Determine the thread <br> size S | Correct label and unit: <br> 0.1 pts |



## REFERENCES:

[1] Gunawan, O. \& Virgus, Y. The one-dimensional camelback potential in the parallel dipole line trap: Stability conditions and finite size effect. J. Appl. Phys. 121, 133902, (2017). DOI:10.1063/1.4978876.
[2] Gunawan, O., Virgus, Y. \& Fai Tai, K. A parallel dipole line system. Appl. Phys. Lett. 106, 062407, (2015). DOI: 10.1063/1.4907931.

