

E2. Marking Scheme & Solution Student Code

Experimental Question

1

page 1 of 7

Parallel Dipole Line Magnetic Trap for Earthquake & Volcanic Sensing (10 points)

A. BASIC CHARACTERISTICS OF PDL TRAP

1. Determination of the magnet's magnetization (M) (2.5 pts)

Quest	Answer					Marks	
ion							
A.1	Record zero offset (B_0) of the Teslameter without any magnet						0.08 pts range (-10 mT to
0.1	nearby. Subtract subsequent field measurement with this value						10 mT)
pts	Example	from a Tes	slameter u	$nit: B_0 = 0$).86 mT		Correct unit: 0.02 pts
4.2	1.6		* 11D	• .1	C: 11	. (7	
A.2						$gion (7 \le x)$	Co at 1-11 and
1.15			_		•	the center of	Correct label and
pts	the magn	<u>et</u> . Record	and plot y	our result	on the an	swer sheet.	unit for data: 0.1 pts
	$x_0 = 4 \text{ mm}$ $B \text{raw} - B_0$	n, B_0 =0.86	mT. Δx is	s measured	from surf	face. <i>B</i> =	Number of correct data for $x \le 16$ mm: 0.05 pts for each correct data, max 0.45 pts
	Δx	X	Braw	В	ln(x)	ln(B)	data, max 0.43 pts
	(mm)	(mm)	(T)	(T)	x in m	B in T	
				, ,			
	3	7	0.1576	0.1567	-4.962	-1.853	
	4	8	0.1186	0.1177	-4.828	-2.139	
	5	9	0.0951	0.0942	-4.710	-2.362	
	6	10	0.0785	0.0776	-4.605	-2.556	
	7	11	0.0657	0.0648	-4.510	-2.736	
	8	12	0.0579	0.0570	-4.423	-2.864	
	9	13	0.0445	0.0436	-4.343	-3.132	
	10	14	0.0371	0.0362	-4.269	-3.318	
	12	16	0.0321	0.0312	-4.135	-3.466	
	Plot:						
		-1.5		 			Plot:
		$y = a+b^*x$ $a = -11.765$					-Correct axis label and unit: 0.05 pts
		(L ui g) g ul -3.0	•	b = -1.997			- Using around 75% of plot area: 0.05 pts
		-3.5		•			-For each correct data point: 0.05 pts, max. 0.4 pts
		L	-5.0 -4.8 In	-4.6 -4.4 (x) (x in m)	-4.2 -4.0		-Adding trendline: 0.1 pts

Student Code

Experimental Question

1

page 2 of 7

A.3 0.75	Use your experimental data to determine the value of the exponent p.	Obtaining <i>p</i> from graph: 0.05 pts
		Obtaining <i>p</i> from linear
pts	Linear regression (LR) $y = a + b x$: $B = \frac{\mu_0 m}{2 \pi L} \frac{1}{x^p}$	regression: 0.1 pts
	$2\pi L x^{p}$	regression. o.i pts
	()	Result:
	$\ln(B) = a - p \ln x$ where $a = \ln\left(\frac{\mu_0 m}{2 \pi L}\right)$.	p = 1.8 - 2.2 : 0.65 pts
	$(2\pi L)$	p = 1.6 - 2.4 : 0.35 pts p = 1.6 - 2.4 : 0.35 pts
	LR yields : $a = -11.765$ and $b = -1.997$	p = 1.0 - 2.4 . 0.33 pts
	The power exponent:	Result with wrong sign:
	p = -b = 2.0	p = (-1.8) - (-2.2) : 0.4pts
		p = (-1.6) - (-2.4) : 0.1 pts
	Note that this is in very good agreement with the exact result:	
	at short distance ($x < L$) a diametric (or a dipole line) magnet	More than two sig. figs.:
	has $B \sim 1/r^2$ dependence. See Ref. [1], Fig. 2c.	minus 0.05 pts
	has b = 1/1 dependence. See Ref. [1], 1 ig. 2e.	1
A.4	Determine the magnet's magnetization M.	Correct unit: 0.05 pts
0.5	Determine the magnet s magnetization in.	Control units over pur
	$\gamma_{\pi I}$	Obtaining intercept (a)
pts	$m = \frac{2\pi L}{\mu_0} \exp(a) = 0.987 \mathrm{Am}^2$	from graph: 0.025 pts
	μ_0	Obtaining intercept from
	m 1.2-106 A /	LR: 0.05 pts
	$M = \frac{m}{\pi R^2 L} = 1.2 \times 10^6 \text{ A/m}$	•
	·· –	Correct formula for <i>m</i>
	This is along to the many appropriate manylts from many and articles	and/or <i>M</i> : 0.1 pts
	This is close to the more accurate results from more extensive	_
	measurements to far field (see Ref. [1], Fig. 2c) and we use	Result for M (x10 ⁶ A/m):
	this value for subsequent questions:	0.9 - 1.4 : 0.3 pts
	$M = 1.1 \times 10^6 \mathrm{A/m}$	0.1 - 2.5 : 0.15 pts
		More than 2 sig. figs.:
		minus 0.05 pts

2. The Magnetic Levitation Effect and Magnetic Susceptibility (χ) (1 pts)

Quest	Answer	Marks
ion		
A.5	Place gently a graphite rod HB/0.5 and length = 8 mm.	correct unit: 0.02
0.1 pts	Measure the levitation height y_0 of the rod (see Fig. 7a). Hint: Use the insert ruler provided as shown in Fig. 7b. Press the ruler on the magnets to read the position of the graphite rod	$y_0 = (1.7 - 2.2) \text{ mm}$: 0.08 pts
	We levitate graphite HB/0.5, $l = 8$ mm. Using the insert-ruler, we measure approximately $\Delta y = 1$ mm from the top of the magnet surface. Thus: $y_0 = R - \Delta y = (3.2 - 1)$ mm = 2.2 mm	partial credit: Only $\Delta y = (1 - 1.5)$ mm: 0.03 pts

Student Code

Experimental Question

1

page 3 of 7

	Use the result from part A.5 to determine the magnetic	
A.6 0.8	susceptibility χ of the graphite rod.	Correct expression for χ: 0.4 pts
pts	Solving for χ : $mg = F_y = -\frac{\mu_0 M^2 \chi V_R}{2} \frac{R^4}{a^5} f_Y(y_0/a)$ $\chi = -\frac{2\rho g a^5}{\mu_0 M^2 R^4 f_Y(y_0/a)}$ We calculate: $a = R + g_M/2 = (3.2 + 1.5/2) \text{ mm} = 3.95 \text{ mm}.$ Using $y_0 = 2.2 \text{ mm}$: $f_Y(u) = \frac{4u(3 - u^2)(1 - u^2)}{(1 + u^2)^5}$,	Result for χ (x10 ⁻⁴) -(1.4 to 2.6): 0.4 pts -(0.5 to 4): 0.2 pts Wrong sign: minus 0.1 pts
	$f_Y(y_0/a) = f_Y(2.2/3.95) = 1.07$ Using the correct $M = 1.1 \times 10^6 \text{A/m}$; and $R = 3.2 \text{ mm}$, $\rho = 1680 \text{ kg/m}^3$ we have: $\chi = -1.85 \times 10^{-4}$. Note that this is very good agreement with the literature value for graphite pencil lead: $\chi = -2 \times 10^{-4}$ (see Ref.[1], pg. 2 &	
	Ref.[2]). The sign is negative indicating a diamagnetic material.	
A.7 0.1 pts	What kind of magnetic material is graphite? Choose one: (i) Ferromagnetic; (ii) Paramagnetic; or (iii) Diamagnetic? (iii) Diamagnetic. Because:	Correct choice: 0.1 pts
	(1) Graphite is repelled by magnetic field(2) The sign of χ is negative.	

3. The camelback potential oscillation and magnetic susceptibility (χ) (1 points)

Quest ion	Answer	Marks
A.8 0.2 pts	Perform an oscillation for the "HB/0.5" graphite and $l=8$ mm. Limit to small oscillation amplitude i.e. $A < 4$ mm. Determine the oscillation period. (The oscillation will decay over time due to damping, ignore this damping effect). Example, we measured 5 oscillations of HB/0.5 with length $l=8$ mm. We displaced it by ~ 3 mm and let it oscillates. We measured 5 oscillation periods:	Correct label and unit: 0.02 pts Number of correct data each 0.01 pts, max 0.03 pts Number of oscillation < 3 : 0 pts >= 3 : 0.05 pts
	Trial 5 Tz (s)	1
	1 6.12	$T_z = (1.2 - 1.5) \text{ s: } 0.1 \text{ pts}$

Student Code

Experimental Question

1

page 4 of 7

A.9 0.8 pts	Calculate the magnetic susceptibility (χ) of the graphite using this oscillation For harmonic oscillator: $k_z = m_R \omega^2$, solving for χ : $\chi = -\frac{k_z}{C_1 \mu_0 M^2 V_r} = \frac{\omega^2 \rho}{C_1 \mu_0 M^2}$ Using the correct $M = 1.1 \times 10^6 \text{A/m}$. Using $C_1 = 198.6/\text{m}^2$, and $T_z = 1.23$ s, we obtain $\chi = -1.5 \times 10^{-4}$. Note that this is in good agreement with the literature value of the graphite pencil lead: $\chi = -2 \times 10^{-4} (\text{Ref.}[1], \text{pg.} 2)$; and the sign is negative indicating a diamagnetic material.	Correct expression for χ : 0.4 pts Result for χ (x10 ⁻⁴) -(1.4 to 2.6): 0.4 pts -(0.5 to 4): 0.2 pts Wrong sign: minus 0.1 pts

4. Oscillator quality factor (Q) and estimate of air viscosity μ_{A} (3.0 points)

Quest	Answer	Marks
A.10 0.5 pts	We need to determine the damping time constant of the oscillation τ . Sketch how you measure τ in a simple way . (a) PDL trap (top view) graphite rod (top view) graphite rod (top view) $\Delta t_{1/2}$ The trick is to use "half-time" concept of exponential decay. We set the oscillation and measure the time taken for the amplitude to halve. The lifetime is: $\tau = \frac{\Delta t_{1/2}}{\ln 2}$	Correct idea: 0.3 pts Correct expression for τ: 0.2 pts
A.11 1.5 pts	Perform oscillation damping experiments with a group of rods with various diameters and fixed length of 8 mm. Determine the damping time constant τ for each rods	Correct label and unit 0.1 Number of correct data

Experimental Question

1

page 5 of 7

We displaced the graphite by ~4 mm, started the stopwatch and then waited until it decays to half.

Student Code

Trial	Diam.	Actual	$\Delta t_{1/2}$	Mean	τ	r^2 xln(0.607
		Radius		$\Delta t_{1/2}$		<i>l/r</i>)
	(mm)	(mm)	(s)	(s)	(s)	(mm ²)
1	0.3	0.19	3.89	3.913	5.646	0.117
			3.97			
			3.88			
2	0.5	0.28	7.69	7.617	10.989	0.224
			7.57			
			7.59			
3	0.7	0.35	8.77	8.82	12.73	0.322
			8.81			
			8.88			
4	0.9	0.45	12.4	11.70	16.88	0.482
			11.33			
			11.38			

for each diameter (4): < 3 : 0.1 pts

>=3:0.25 pts (max 1.0 pts)

Positive monotonic trend for τ vs. diameter from 0.3 to 0.9 mm with $\tau = 5$ to 20 sec : 0.4 pts

A.12 1 pts

Determine the air viscosity μ_A

Correct unit: 0.05

Obtaining result with linear regression or plot: 0.25 pts

Result μ_A (x10⁻⁶ Pa.s): 20 - 60 : 0.7 pts 10 - 80 : 0.4 pts 1 - 100 : 0.1 pts

We have: $\tau = b r^2 \ln \left(0.607 \times \frac{l}{r} \right)$, where: $b = \frac{2}{3} \frac{\rho}{\mu_A}$. We performed linear regression y = a + b x, with $y = \tau$ and $x = r^2 \ln \left(0.607 \times \frac{l}{r} \right)$. We obtain: $b = 29.02 \text{ s/mm}^2$. $\mu_A = \frac{2}{3} \frac{\rho}{b} = 38.6 \cdot 10^{-6} \text{ Pa.s}$ (1 Pa.s = 1 kg/m s)

Note that this is about 2.1x the actual viscosity of air of 18.2μ .Pa.s. The discrepancy is due to the ellipsoidal

<u> </u>			
Student Code			

Experimental Question

page 6 of 7

approximation of the Stokes drag (vs. the actual cylindrical	
shape of the rod) and the proximity effect of the rod to the	
shape of the roa, and the proximity effect of the roa to the	
magnet (wall effect). Another factor is the crude nature of our	
magnet (wan effect). Another factor is the crude nature of our	
manual τ determination. See Ref. [1], pg. 8.	
manual t determination. See Kel. [1], pg. 8.	

B. <u>SENSOR APPLICATION OF THE PDL TRAP</u>

5. PDL Trap Seismometer (0.5 pts)

Quest	Answer	Marks
B.1 0.2 pts	Which diameter of rod do you choose? To obtain the lowest acceleration noise floor " a_n " we should choose the largest diameter graphite i.e. 0.9 mm, because their damping time is the longest and the mass is the largest.	Correct answer: 0.2 pts
B.2 0.3 pts	Calculate the seismometer acceleration noise floor (a_n) for the rod of your choice! For HB/0.9 and length $l = 8$ mm:	Correct unit: 0.1 Correct answer: 0.2 pts
	We use $\tau = 16.9$ s; and $T = 298$ K, we have: $m_R = \rho \pi r^2 l = 8.55 \times 10^{-6}$ kg:	Correct answer. 0.2 pts
	$a_n = \sqrt{\frac{4k_B T \omega_0}{Qm_R}} = \sqrt{\frac{8k_B T}{\tau m_R}} = 1.5 \times 10^{-8} m/(s^2 Hz^{0.5})$	

6. PDL Trap Tiltmeter (2 pts)

Quest ion	Answer	Marks
B.3 0.5 pts	Derive the relation theoretically between displacement Δz with the screw thread size S and the number of turns (N) . $k_z \Delta z = m g \sin \theta = m g N S / D \qquad \Delta z = \frac{m g S N}{k_z D}$ From Question 3, we also have $k_z = m \omega^2$: $\Delta z = \frac{g S}{\omega^2 D} N$	Correct expression: 0.5 pts Partial credit $k_z \Delta z = m g \sin \theta : 0.2$
B.4 1.25 pts	By turning the screw slowly, determine the rod displacement Δz vs. the number of screw turns (N). Determine the thread size S	Correct label and unit: 0.1 pts

Experimental Question

page 7 of 7

We measured the distance between screws: D = 22 cm, and we used the period from Q3: $T_z = 1.23 \text{ s}$

Student Code

Δz	ф	N		
(mm)		(turn)		
0	0	0		
0.5	135	0.375		
1	270	0.75		
1.5	450	1.25		
2	585	1.625		
2.5	720	2.0		
3	855	2.375		
3.5	945	2.625		

By performing linear regression: y = a + b x

We have b = 1.287 mm/turns : $S = \frac{b\omega^2 D}{g} = 0.75$ mm/turn.

This is reasonably close to the actual value of the thread size: S $= (0.8\pm0.1) \text{ mm/turn.}$

B.5	When the ground tilt changes we want the graphite rod to go to
0.25	equilibrium as fast as possible (instead of sustaining very long
pts	oscillation) to allow easy reading. What is the ideal Q factor
-	for a tiltmeter?

We need critical damping thus: Q = 0.5

Distance between screws: 22.8 < D < 22.2 cm: 0.1 pts

Number of correct data:

< 3 sets : 0 pts3-5 sets: 0.15 pts >5 sets : 0.25 pts

Obtaining result with linear regression or plot: 0.2 pts

Result:

0.7 < S < 0.9 : 0.55 pts0.5 < S < 1.1 : 0.15 pts

Correct unit for S: 0.05

Correct Q: 0.25 pts

REFERENCES:

- [1] Gunawan, O. & Virgus, Y. The one-dimensional camelback potential in the parallel dipole line trap: Stability conditions and finite size effect. J. Appl. Phys. 121, 133902, (2017). DOI:10.1063/1.4978876.
- [2] Gunawan, O., Virgus, Y. & Fai Tai, K. A parallel dipole line system. Appl. Phys. Lett. 106, 062407, (2015). DOI: 10.1063/1.4907931.