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Theory
English (UK) ST1-1

GW150914 (10 points)

Part A. Newtonian (conservative) orbits (3.0 points)

A.1 Apply Newton’s law to mass 𝑀1:

𝑀1
d

2 ⃗𝑟1
d𝑡2 = 𝐺 𝑀1𝑀2

| ⃗𝑟2 − ⃗𝑟1|2
⃗𝑟2 − ⃗𝑟1

| ⃗𝑟2 − ⃗𝑟1|
. (1)

Use, from eq. (1) of the question sheet

⃗𝑟2 = −𝑀1
𝑀2

⃗𝑟1 , (2)

in eq. (1) above, to obtain
d2 ⃗𝑟1
d𝑡2 = − 𝐺𝑀3

2
(𝑀1 + 𝑀2)2𝑟2

1

⃗𝑟1
𝑟1

. (3)

A.1

𝑛 = 3, 𝛼 = 𝐺𝑀3
2

(𝑀1 + 𝑀2)2 .
1.0pt

A.2 The total energy of the system is the sum of the two kinetic energies plus the gravitational poten-
tial energy. For circular motions, the linear velocity of each of the masses reads

| ⃗𝑣1| = 𝑟1Ω , | ⃗𝑣2| = 𝑟2Ω , (4)

Thus, the total energy is

𝐸 = 1
2

(𝑀1𝑟2
1 + 𝑀2𝑟2

2)Ω2 − 𝐺𝑀1𝑀2
𝐿

, (5)

Now,
(𝑀1𝑟1 − 𝑀2𝑟2)2 = 0 ⇒ 𝑀1𝑟2

1 + 𝑀2𝑟2
2 = 𝜇𝐿2 . (6)

Thus,

𝐸 = 1
2

𝜇𝐿2Ω2 − 𝐺𝑀𝜇
𝐿

. (7)

A.2

𝐴(𝜇, Ω, 𝐿) = 1
2

𝜇𝐿2Ω2 .
1.0pt

A.3 Energy (3) of the question sheet can be interpreted as describing a system of a mass 𝜇 in a cir-
cular orbit with angular velocity Ω, radius 𝐿, around a mass 𝑀 (at rest). Equating the gravitational
acceleration to the centripetal acceleration:

𝐺 𝑀
𝐿2 = Ω2𝐿 . (8)

This is indeed Kepler’s third law (for circular orbits). Then, from (7),

𝐸 = −1
2

𝐺𝑀𝜇
𝐿

. (9)

A.3

𝛽 = −1
2

.
1.0pt
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Theory
English (UK) ST1-2

Part B - Introducing relativistic dissipation (7.0 points)

B.1 Some simple trigonometry for the 𝑥, 𝑦 motion of the masses (in an appropriate Cartesian system)
yields:

(𝑥1, 𝑦1) = 𝑟1(cos(Ω𝑡), sin(Ω𝑡)) , (𝑥2, 𝑦2) = −𝑟2(cos(Ω𝑡), sin(Ω𝑡)) . (10)

Then,

𝑄𝑖𝑗 = 𝑀1𝑟2
1 + 𝑀2𝑟2

2
2

⎛⎜⎜⎜
⎝

4
3 cos

2(Ω𝑡) − 2
3 sin

2(Ω𝑡) 2 sin(Ω𝑡) cos(Ω𝑡) 0
2 sin(Ω𝑡) cos(Ω𝑡) 4

3 sin
2(Ω𝑡) − 2

3 cos
2(Ω𝑡) 0

0 0 − 2
3

⎞⎟⎟⎟
⎠

, (11)

or, using some simple trigonometry and (6),

𝑄𝑖𝑗 = 𝜇𝐿2

2
⎛⎜⎜⎜
⎝

1
3 + cos 2Ω𝑡 sin 2Ω𝑡 0
sin 2Ω𝑡 1

3 − cos 2Ω𝑡 0
0 0 − 2

3

⎞⎟⎟⎟
⎠

. (12)

B.1

𝑘 = 2Ω , 𝑎1 = 𝑎2 = 1
3

, 𝑎3 = −2
3

, 𝑏1 = 1, 𝑏2 = −1, 𝑏3 = 0 , 𝑐12 = 𝑐21 = 1, 𝑐𝑖𝑗
otherwise= 0 .

1.0pt

B.2 First take the derivatives:

d3𝑄𝑖𝑗

d𝑡3 = 4Ω3𝜇𝐿2
⎛⎜⎜⎜
⎝

sin 2Ω𝑡 − cos 2Ω𝑡 0
− cos 2Ω𝑡 − sin 2Ω𝑡 0

0 0 0

⎞⎟⎟⎟
⎠

. (13)

Then perform the sum:

d𝐸
d𝑡

= 𝐺
5𝑐5 (4Ω3𝜇𝐿2)2[2 sin2(2Ω𝑡) + 2 cos2(2Ω𝑡)] = 32

5
𝐺
𝑐5 𝜇2𝐿4Ω6 . (14)

B.2

𝜉 = 32
5

.
1.0pt

B.3 Now we assume a sequency of Keplerian orbits, with decreasing energy, which is being taken
from the system by the GWs.

First, from (9), differentiating with respect to time,

d𝐸
d𝑡

= 𝐺𝑀𝜇
2𝐿2

d𝐿
d𝑡

, (15)

Since this loss of energy is due to GWs, we equate it with (minus) the luminosity of GWs, given by (14)

𝐺𝑀𝜇
2𝐿2

d𝐿
d𝑡

= −32
5

𝐺
𝑐5 𝜇2𝐿4Ω6 . (16)

We can eliminate the 𝐿 and d𝐿/d𝑡 dependence in this equation in terms of Ω and dΩ/d𝑡, by using
Kepler’s third law (8), which relates:

𝐿3 = 𝐺 𝑀
Ω2 , d𝐿

d𝑡
= −2

3
𝐿
Ω
dΩ
d𝑡

. (17)
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Substituting in (16), we obtain:

(dΩ
d𝑡

)
3

= (96
5

)
3 Ω11

𝑐15 𝐺5𝜇3𝑀2 ≡ (96
5

)
3 Ω11

𝑐15 (𝐺𝑀c)
5 . (18)

B.3
𝑀c = (𝜇3𝑀2)1/5 .

1.0pt

B.4 Angular and cycle frequencies are related as Ω = 2𝜋𝑓. From the information provided above: GWs
have a frequency which is twice as large as the orbital frequency, we have

Ω
2𝜋

= 𝑓GW
2

. (19)

Formula (10) of the question sheet has the form

dΩ
d𝑡

= 𝜒Ω11/3 , 𝜒 ≡ 96
5

(𝐺𝑀c)5/3

𝑐5 . (20)

Thus, from (11) of the question sheet

Ω(𝑡)−8/3 = 8
3

𝜒(𝑡0 − 𝑡) , (21)

or, using (20) and the definition of 𝜒 gives

𝑓−8/3
GW (𝑡) = (8𝜋)8/3

5
(𝐺𝑀c

𝑐3 )
5/3

(𝑡0 − 𝑡) . (22)

B.4
𝑝 = 1 .

2.0pt

B.5 From the figure, we consider the two Δ𝑡’s as half periods. Thus, the (cycle) GW frequency is 𝑓GW =
1/(2Δ𝑡). Then, the four given points allow us to compute the frequency at the mean time of the two
intervals as

𝑡AB 𝑡CD
𝑡 (s) 0.0045 0.037

𝑓GW (Hz) (2 × 0.009)−1 (2 × 0.006)−1

Now, using (22) we have two pairs of (𝑓GW,𝑡) values for two unknowns (𝑡0,𝑀c). Expressing (22) for both
𝑡AB and 𝑡CD and dividing the two equations we obtain:

𝑡0 =
𝐴𝑡CD − 𝑡AB

𝐴 − 1
, 𝐴 ≡ (

𝑓GW(𝑡AB)
𝑓GW(𝑡CD)

)
−8/3

. (23)

Replacing by the numerical values, 𝐴 ≃ 2.95 and 𝑡0 ≃ 0.054 s. Now we can use (22) for either of the
two values 𝑡AB or 𝑡CD and determine 𝑀c. One obtains for the chirp mass

𝑀c ≃ 6 × 1031 kg ≃ 30 × 𝑀⊙ . (24)

Thus, the total mass 𝑀 is
𝑀 = 43/5𝑀c ≃ 69 × 𝑀⊙ . (25)

This result is actually remarkably close to the best estimates using the full theory of General Relativity!
[Even though the actual objects do not have precisely equal masses and the theory we have just used
is not valid very close to the collision.]
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B.5
𝑀c ≃ 30 × 𝑀⊙ , 𝑀 ≃ 69 × 𝑀⊙ .

1.0pt

B.6 From (8), Kepler’s law states that 𝐿 = (𝐺𝑀/Ω2)1/3. The second pair of points highlighted in the
plot correspond to the cycle prior to merger. Thus, we use (19) to obtain the orbital angular velocity
at 𝑡CD:

Ω𝑡CD ∼ 2.6 × 102 rad/s . (26)

Then, using the total mass (25) we find

𝐿 ∼ 5 × 102 km . (27)

Thus, these objects have a maximum radius of 𝑅max ∼ 250 km. Hence they have over 30 times more
mass and,

𝑅⊙
𝑅max

∼ 3 × 103 (28)

they are 3000 times smaller than the Sun and!

Their linear velocity is

𝑣col = 𝐿
2

Ω ≃ 7 × 104 km/s . (29)

They are moving at over 20% of the velocity of light!

B.6

𝐿collision ∼ 5 × 102 km ,
𝑅⊙

𝑅max

∼ 3 × 103 , 𝑣col
𝑐

∼ 0.2 .
1.0pt


