Physics of Live Systems (10 points)

Part A. The physics of blood flow (4.5 points)

A. 1

Since the vessel network is symmetrical, the flow in a vessel of level $i+1$ is half the flow in a vessel of level i.

In this way, we can sum the pressure differences in all levels:

$$
\Delta P=\sum_{i=0}^{N-1} Q_{i} R_{i}=Q_{0} \sum_{i=0}^{N-1} \frac{R_{i}}{2^{i}} .
$$

Introducing the radii dependences yields

$$
\Delta P=Q_{0} \sum_{i=0}^{N-1} \frac{8 \ell_{i} \eta}{2^{i} \pi r_{i}^{4}}=Q_{0} \frac{8 \ell_{0} \eta}{\pi r_{0}^{4}} \sum_{i=0}^{N-1} \frac{2^{4 i / 3}}{2^{i} 2^{i / 3}}=Q_{0} N \frac{8 \ell_{0} \eta}{\pi r_{0}^{4}} .
$$

Therefore

$$
Q_{0}=\Delta P \frac{\pi r_{0}^{4}}{8 N \ell_{0} \eta}
$$

Hence, the flow rate for a vessel network in level i is
A. 1

$$
Q_{i}=\Delta P \frac{\pi r_{0}^{4}}{2^{i+3} N \ell_{0} \eta}
$$

A. 2

Replace values in the formula and change units appropriately

$$
\begin{aligned}
Q_{0} & =\frac{\Delta P \pi r_{0}^{4}}{8 N \ell_{0} \eta}= \\
& =\frac{(55-30) \times 1.013 \times 10^{5} \times 3.1415 \times\left(6.0 \times 10^{-5}\right)^{4}}{760 \times 48 \times 2.0 \times 10^{-3} \times 3.5 \times 10^{-3}}=4.0 \times 10^{-10} \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

to obtain the final value in the requested unites:

A. 2

$$
Q_{0} \simeq 1.5 \mathrm{~m} \ell / \mathrm{hr} .
$$

A. 3

The current is given by

$$
I=\frac{P_{\mathrm{in}} \mathrm{i}^{i \omega t}}{R+i \omega L+\frac{1}{i \omega C}} .
$$

The pressure difference in the capacitor is

$$
P_{\text {out }} \mathrm{e}^{i(\omega t+\phi)}=\frac{P_{\text {in }} \mathrm{e}^{i \omega t}}{R+i \omega L+\frac{1}{i \omega C}} \frac{1}{i \omega C}=\frac{P_{\text {in }} \mathrm{e}^{i \omega t}}{i \omega C R-\omega^{2} L C+1} .
$$

The amplitude is

$$
P_{\text {out }}=\frac{P_{\text {in }}}{\sqrt{\left(1-\omega^{2} L C\right)^{2}+\omega^{2} C^{2} R^{2}}} .
$$

To be smaller than $P_{\text {in }}$, for $\omega \rightarrow 0$:

$$
\left(1-\omega^{2} L C\right)^{2}+\omega^{2} C^{2} R^{2}>1 \Leftrightarrow-2 C L+C^{2} R^{2}>0 .
$$

Replacing the expressions for L, C, and R we get: $\frac{64 n^{2} \ell^{2}}{3 E h r^{3} \rho}>1$.

A. 3

$$
P_{\text {out }}=\frac{P_{\text {in }}}{\sqrt{\left(1-\omega^{2} L C\right)^{2}+\omega^{2} C^{2} R^{2}}} .
$$

Condition:

$$
\frac{64 \eta^{2} \ell^{2}}{3 E h r^{3} \rho}>1
$$

Alternative way to obtain $P_{\text {out }}$:
The amplitude of the current in the equivalent circuit is $I_{0}=\frac{P_{\text {in }}}{Z}$, where

$$
Z=\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}
$$

is the modulus of the impedance. Hence, the voltage amplitude in the capacitor is

$$
P_{\text {out }}=\frac{1}{\omega C} \times I_{0}=\frac{P_{\text {in }}}{\sqrt{\omega^{2} C^{2} R^{2}+\left(\omega^{2} L C-1\right)^{2}}} .
$$

A. 4

The previous condition can also be expressed as

$$
h<\frac{64 \eta^{2} \ell^{2}}{3 E r^{3} \rho} .
$$

For the network referred to in A. 2

$$
h<\frac{64 \eta^{2} \ell_{0}^{2} \times 2^{i}}{3 \times 2^{2 i / 3} E r_{0}^{3} \rho}=\frac{64 \times\left(3.5 \times 10^{-3}\right)^{2} \times\left(2.0 \times 10^{-3}\right)^{2}}{3 \times 0.06 \times 10^{6} \times\left(6.0 \times 10^{-5}\right)^{3} \times 1.05 \times 10^{3}} \times 2^{i / 3}=7.7 \times 10^{-5} \times 2^{i / 3} .
$$

For $i=0$, in the worse case scenario,

$$
h_{\max }=7.7 \times 10^{-5} \times 2^{0}=7.7 \times 10^{-5} \mathrm{~m}
$$

This value is certainly observed in these vessels since their radius range from $18 \mu \mathrm{~m}$ to $60 \mu \mathrm{~m}$. A wall width smaller than $80 \mu \mathrm{~m}$ is certainly reasonable.

A. 4 Maximum $h=8 \times 10^{-5} \mathrm{~m}$

0.7 pt

Part B. Tumor growth (5.5 points)

B. 1

The expressions for the masses of tumour and normal tissue are written as:

$$
\left\{\begin{array}{l}
M_{\mathrm{T}}=V_{\mathrm{T}} \rho_{\mathrm{T}}=V_{\mathrm{T}} \rho_{0}\left(1+\frac{p}{K_{\mathrm{T}}}\right) \\
M_{\mathrm{N}}=V \rho_{0}=\left(V-V_{\mathrm{T}}\right) \rho_{0}\left(1+\frac{p}{K_{\mathrm{N}}}\right)
\end{array}\right.
$$

The pressure, p, can be expressed as

$$
p=\frac{M_{\mathrm{T}} K_{\mathrm{T}}}{V_{\mathrm{T}} \rho_{0}}-K_{\mathrm{T}}
$$

and, then, used in the equation for M_{N} :

$$
M_{\mathrm{N}}=\left(V-V_{\mathrm{T}}\right) \frac{M_{\mathrm{N}}}{V}\left[\left(1-\frac{K_{\mathrm{T}}}{K_{\mathrm{N}}}\right)+\frac{M_{\mathrm{T}} V K_{\mathrm{T}}}{V_{\mathrm{T}} M_{\mathrm{N}} K_{\mathrm{N}}}\right]
$$

Simplifying and rearranging the terms, the equation for v becomes

$$
(1-\kappa) v^{2}-(1+\mu) v+\mu=0
$$

for which the solution is (the other solution of the quadratic equation is not physically relevant since does not lead to $v=0$ for $\mu=0$)
B. 1
$v=\frac{1+\mu-\sqrt{(1+\mu)^{2}-4 \mu(1-\kappa)}}{2(1-\kappa)}$.

B. 2

For $r<R_{\mathrm{T}}$, the conservation of energy implies that

$$
4 \pi r^{2}(-k) \frac{\mathrm{d} T}{\mathrm{~d} r}=\mathcal{P} \frac{4}{3} \pi r^{3} .
$$

Therefore, the temperature difference to $37{ }^{\circ} \mathrm{C}=310.15 \mathrm{~K}, \Delta T(r)$, is given by

$$
\Delta T(r)=-\frac{\mathcal{P} r^{2}}{6 k}+C
$$

where C is a constant.
For $r>R_{\mathrm{T}}$, the conservation of energy implies that

$$
4 \pi r^{2}(-k) \frac{\mathrm{d} T}{\mathrm{~d} r}=\mathcal{P} \frac{4}{3} \pi R_{\top}^{3} .
$$

Therefore, the temperature difference to $37^{\circ} \mathrm{C}$ is

$$
\Delta T(r)=\frac{\mathcal{P} R_{\mathrm{T}}^{3}}{3 k r}
$$

In this case there is no constant, since very far away the increase in temperature is zero.
Matching the two solutions at $r=R_{\mathrm{T}}$ gives

$$
C=\frac{\mathcal{P} R_{T}^{2}}{2 k} .
$$

Therefore the temperature at the centre of the tumour, in SI units, is
B. 2 Temperature: $310.15+\frac{\mathcal{P} R_{\uparrow}^{2}}{2 k}$.

B. 3

The increase in temperature at the tumour surface (the lower temperature in the tumour) is

$$
\Delta T\left(R_{\mathrm{T}}\right)=\frac{\mathcal{P} R_{\mathrm{T}}^{2}}{3 k} .
$$

This increase should be equal to 6.0 K . Therefore,

$$
\mathcal{P}=\frac{3 \Delta T k}{R_{\top}^{2}}=\frac{3 \times 6 \times 0.6}{0.05^{2}}=4.3 \mathrm{~kW} / \mathrm{m}^{3} .
$$

B. $3 \quad \mathcal{P}_{\text {min }}=4.3 \mathrm{~kW} / \mathrm{m}^{3}$.
0.5 pt

B. 4

We can relate δr with the pressure in the tumour, using the relation given in the text up to leading order in $p-P_{\text {cap }}: \delta r=\frac{p-P_{\text {cap }}}{2\left(p_{\mathrm{c}}-P_{\text {cap }}\right)} \delta r_{\mathrm{c}}$. Therefore, if $p-P_{\text {cap }}$ is very small, also it is δr.
The pressure can be related with the volume. We know that

$$
\frac{M_{\mathrm{N}}}{V_{\mathrm{N}}}=\frac{\rho_{0} V}{V-V_{\mathrm{T}}}=\frac{\rho_{0}}{1-v}=\rho_{0}\left(1+\frac{p}{K_{\mathrm{N}}}\right) .
$$

And so $p=\frac{K_{N} v}{1-v}$.
When the thinner vessels are narrower, the flow rate in the main vessel is altered:

$$
\begin{gathered}
\Delta P=\left(Q_{0}+\delta Q_{0}\right) \sum_{i=0}^{N-1} \frac{8 \ell_{i} \eta}{2^{i} \pi r_{i}^{4}}=\left(Q_{0}+\delta Q_{0}\right) \frac{8 \ell_{0} \eta}{\pi r_{0}^{4}}\left(\sum_{i=0}^{N-2} \frac{2^{4 i / 3}}{2^{i} 2^{i / 3}}+\frac{2^{4(N-1) / 3}}{2^{N-1} 2^{(N-1) / 3}\left(1-\frac{\delta r}{r_{0} / 2^{(N-1) / 3}}\right)^{4}}\right) \\
\Longrightarrow \Delta P \simeq\left(Q_{0}+\delta Q_{0}\right) \frac{\Delta P}{N Q_{0}}\left(N-1+1+\frac{4 \delta r}{r_{N-1}}\right)
\end{gathered}
$$

Noting that $\frac{\delta Q_{N-1}}{Q_{N-1}}=\frac{\delta Q_{0}}{Q_{0}}$, we obtain

$$
1+\frac{\delta Q_{N-1}}{Q_{N-1}}=\frac{1}{1+\frac{4 \delta r}{N r_{N-1}}} \simeq 1-\frac{4 \delta r}{N r_{N-1}}
$$

And so:

$$
\frac{\delta Q_{N-1}}{Q_{N-1}} \simeq-\frac{4}{N} \frac{\delta r}{r_{N-1}}
$$

Putting all together
B. 4

$$
\frac{\delta Q_{N-1}}{Q_{N-1}} \simeq-\frac{2}{N} \frac{K_{\mathrm{N}} v-(1-v) P_{\text {cap }}}{(1-v)\left(p_{\mathrm{c}}-P_{\text {cap }}\right)} \frac{\delta r_{\mathrm{c}}}{r_{N-1}} .
$$

