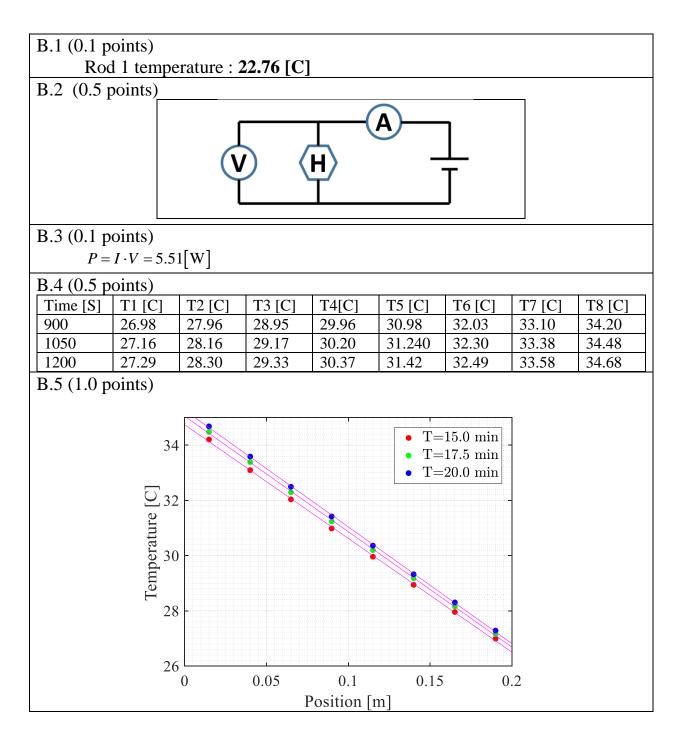


Wiedemann-Franz Law – Solution

Part A: Electrical conductivity of metals (1.5 points)

A.1 (1.0 points)

Magnet descend time:


Number	Copper [s]	Aluminum[s]	Brass [s]
1	17.77	9.23	6.1
2	17.96	9.39	5.83
3	18.16	9.22	6.04
4	18.15	9.37	5.86
5	17.76	9.36	6.16
6	18.2	9.44	5.92
7	17.67	9.65	5.9
8	17.9	9.18	6.08
9	17.67	9.41	5.86
10	18.36	8.96	5.99
Average	17.96	9.32	5.97

A.2 (0.5 points)			
	Copper	Aluminum	Brass
Electrical conductivity $\left[\frac{1}{\Omega m}\right]$	5.97×10^{7}	2.98×10^{7}	1.60×10^{7}

S2-2

Part B: Thermal conductivity of copper (3.0 points)

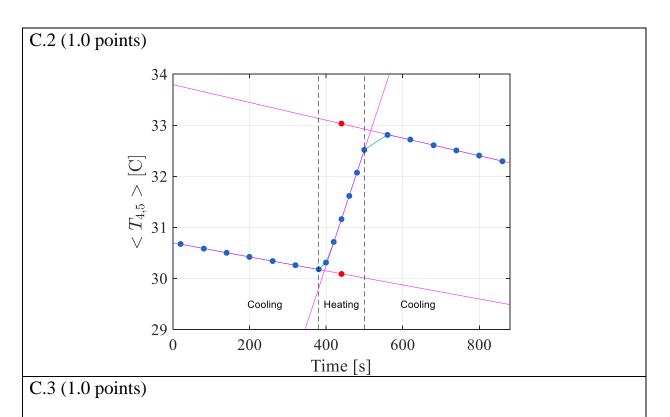
S2-3

B.6 (0.5 points)

$$\kappa_{0} = -\frac{P}{A\frac{\Delta T}{\Delta x}} = -\frac{5.51[W]}{\pi \cdot (10^{-2}[m])^{2} \cdot (-41.8\left[\frac{K}{m}\right])} = 420\left[\frac{W}{mK}\right]$$

$$\frac{\Delta T}{\Delta t} = \frac{31.04[C] - 30.62[C]}{5 \cdot 60[s]} = 1.4 \cdot 10^{-3}\left[\frac{K}{s}\right]$$
B.7 (0.3 points)
higher value
We expect a **higher value** of κ_{0} compared with the real κ_{cu} because of 2 reasons:

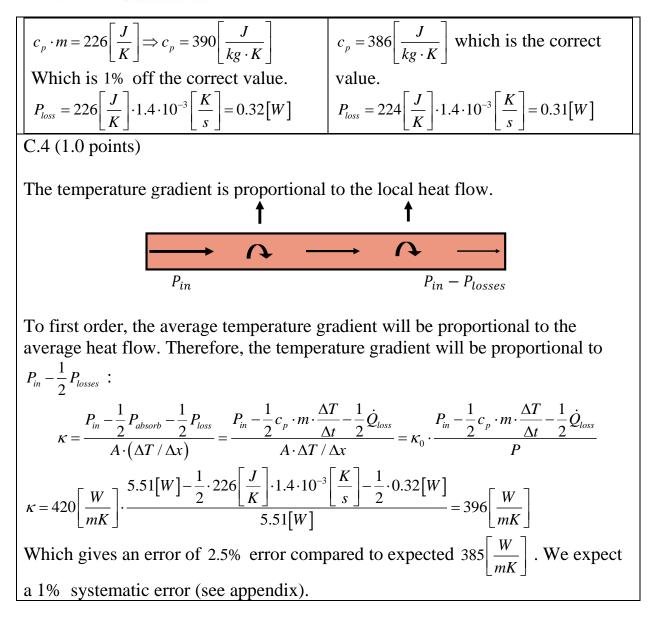
- 1. A part of the supplied heat power is lost through the side walls. Therefore, the heat transfer through the cross-section of the rod is smaller.
- 2. Since the system is not in a steady state $(\frac{\Delta T}{\Delta t} \neq 0)$, the corresponding power involved should be subtracted from the power supplied by the heater.



Part C: Heat loss and heat capacity of copper (4.0 points)

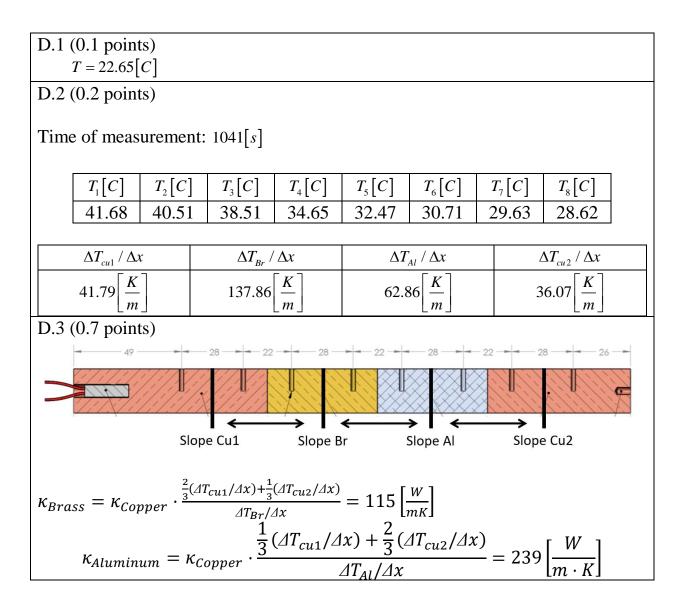
Time[s]	$T_1[C]$	$T_2[C]$	$T_3[C]$	$T_4[C]$	$T_5[C]$	$T_6[C]$	$T_7[C]$	$T_8[C]$	$T_{av}[C]$
20				30.67	30.67				30.67
80				30.59	30.59				30.59
140				30.50	30.50				30.50
200				30.42	30.42				30.42
260				30.34	30.34				30.34
320				30.26	30.26				30.26
380				30.18	30.18				30.18
400				30.38	30.25				30.31
420				30.87	30.56				30.72
440				31.37	30.96				31.16
460				31.85	31.38				31.61
480				32.32	31.82				32.07
500				32.78	32.26				32.52
560				32.88	32.75				32.81
620				32.73	32.70				32.72
680				32.61	32.61				32.61
740				32.51	32.51				32.51
800				32.40	32.40				32.40
860				32.30	32.30				32.30

<u>S2-5</u>



The purpose of this part is to correct to first order the result in part B. Hence, every solution within 10% accuracy is accepted (see marking scheme).

Solution 1 (using slopes):Solution 2 (using jump): $P_{loss} = c_p \cdot m \cdot \frac{\partial T_{av}}{\partial t} \Big|_{Cooling}$ $P_{loss} = c_p \cdot m \cdot \frac{\partial T_{av}}{\partial t} \Big|_{Cooling}$ $P_{loss} = c_p \cdot m \cdot \frac{\partial T_{av}}{\partial t} \Big|_{Cooling}$ $P_{in} = c_p \cdot m \cdot \left(\frac{\partial T_{av}}{\partial t}\Big|_{Heating} - \frac{\partial T_{av}}{\partial t}\Big|_{Cooling}\right)$ $P_{in} \cdot \Delta t = c_p \cdot m \cdot \Delta T$ Where $\frac{\partial T_{av}}{\partial t}\Big|_{Cooling}$ is the average of both $Where \frac{\partial T_{av}}{\partial t}\Big|_{Cooling}$ is the average of bothcooling slopes.5.5[W] $c_p \cdot m = \frac{5.5[W]}{\left(2.27 \cdot 10^{-2}\left[\frac{K}{s}\right] + 1.6 \cdot 10^{-3}\left[\frac{K}{s}\right]\right)}$


S2-6

S2-7

Part D: Thermal conductivity of multiple metals (1.0 points)

S2-8

Part E: The Wiedemann-Franz law (0.5 points)

E.1	(0.5 points)				
		Copper	Aluminum	Brass	
	$\sigma \left[\Omega^{-1} m^{-1} \right]$ Electric conductivity	5.97×10^{7}	2.98×10^{7}	1.60×10^{7}	
	$\kappa \left[\frac{W}{Km}\right]$ Heat conductivity	396	239	115	
	$L\left[\frac{W\Omega}{K^2}\right]$ Lorenz coefficient	2.21×10^{-8}	2.67×10^{-8}	2.40×10^{-8}	

MS2-1

Wiedemann-Franz Law – Marking Scheme

Part A: Electric conductivity of metals (1.5 points)

A.1	Measuring magnet fall (1.0 pts)	
	The number of total measurements : if $N \le 15$	0.2 pts
	if $15 < N \le 21$	0.5 pts
	if <i>N</i> > 21	0.7 pts
	Average travel time within 10% of solution for 2 out of 3 rods	0.3 pts
A.2	Calculation of conductivity (0.5 pts)	
	Correct calculation of conductivity from A1	0.1 pts
	Final result for 2 out of 3 values: Within 10% of correct value	0.4 pts
	Within 20% of correct value	0.2 pts

Part B: Thermal conductivity of copper (3.0 points)

	0.1 ptc
Writing room temperature with units	0.1 pts
Design a 4-probe circuit (0.5 pts)	
Drawing ammeter in series with source and heater	0.2 pts
Measuring voltage on heater and not power source	0.3 pts
Writing the equation for power and proper calculation	0.1 pts
Writing thermometers readings (0.5 pts)	
Complete set (24 temperatures in table)	0.2 pts
Units	0.1 pts
2 digits after decimal point	0.1 pts
Times within 1 minute of requirement (15,17.5,20 minutes)	0.1 pts
Thermal equilibrium graph (1.0 pts)	
All 24 points are plotted	0.4 pts
Correct axes, with units	0.2 pts
	Design a 4-probe circuit (0.5 pts)Drawing ammeter in series with source and heaterMeasuring voltage on heater and not power sourceWriting the equation for power and proper calculationWriting thermometers readings (0.5 pts)Complete set (24 temperatures in table)Units2 digits after decimal pointTimes within 1 minute of requirement (15,17.5,20 minutes)Thermal equilibrium graph (1.0 pts)All 24 points are plotted

MS2-2

	Points span on 1/2 the area of graph paper	0.2 pts
	Slope is sketched for 17.5 min	0.2 pts
B.6	Obtaining κ_0 (0.5 points)	
	Correct expression for κ_0	0.1 pts
Op.1	Range of $\kappa_0 \left[W / (mK) \right]$: $404 \le \kappa_0 \le 446$	0.2 pts
	$382 \le \kappa_0 \le 468$	0.1 pts
	Range of $\Delta T / \Delta t [K/s]$: $1.25 \cdot 10^{-3} \leq \Delta T / \Delta t \leq 1.55 \cdot 10^{-3}$	0.2 pts
	$1.1 \cdot 10^{-3} \le \Delta T / \Delta t \le 1.7 \cdot 10^{-3}$	0.1 pts
Op.2	The value of the corrected κ (using the method in the solution) with $\kappa_0 \ \Delta T / \Delta t$ and c_p , P_{loss} from the official solution is in range:	
	$376 \le \kappa \le 416$	0.4
	$356 < \kappa < 376$ or $416 < \kappa < 436$	0.2
B.7	Correct answer - Higher value	0.3 pts

Part C: Heat loss and heat capacity of copper (4.0 points)

C.1	Cooling-Heating-Cooling cycle (1.0 pts)	
	Number of measurement points for each step: if $3 \le N < 5$	0.1 pts
	if $N \ge 5$	0.2 pts
	Heating step time in range $1[\min] \le t \le 3[\min]$	0.2 pts
	Cooling steps time $t > 200[s]$	0.2 pts
	If average between T4,T5 or average over all thermometers	0.2 pts
	Used only T4 or only T5	0.1 pts
	The reported temperature mid-heating is:	
	Less than 2.5 [C] away from average temperature in B.4	0.2 pts
	Between 2.5[C] and 4.0[C] from average temperature in B.4	0.1 pts

MS2-3

C.2	Cooling – Heating – Cooling graph (1.0 pts)	
	Correct axes, units on axes	0.2 pts
	Number of points on graph: $N \ge 15$	0.4 pts
	$12 \le N < 15$	0.2 pts
	Points span on 1/2 the area of graph paper	0.2 pts
	Slope lines are plotted for cooling steps	0.2 pts
C.3	Obtaining c_p and P_{loss} (1.0 pts)	
	$P_{loss} = c_{p} \cdot m \cdot \frac{\partial T_{av}}{\partial t} \bigg _{Cooling}$	0.2 pts
	$P_{in} = c_p \cdot m \cdot \left(\frac{\partial T_{av}}{\partial t} \Big _{Heating} - \frac{\partial T_{av}}{\partial t} \Big _{Cooling} \right) \text{ or } P_{in} \cdot \Delta t = c_p \cdot m \cdot \Delta T$	0.4 pts
	Range of c_p in $\left[J/(kg \cdot K)\right]$: $425 \le c_p \le 350$	0.2 pts
	$465 \le c_p \le 310$	0.1 pts
	Range of P_{loss} in $[W] : 0.25 \le P_{loss} \le 0.38$	0.2 pts
	$0.19 \le P_{loss} \le 0.44$	0.1 pts
C.4	Correct κ (1.0 pts)	
	$c_p \cdot m \cdot \frac{\Delta T}{\Delta t}$	0.1 pts
	$c_p \cdot m \cdot \frac{\Delta T}{\Delta t}$ and P_{loss} are treated the same way	0.1 pts
	Form of equation $\kappa = \frac{\kappa_0}{P} \left(P - \alpha \cdot \left(c_p \cdot m \cdot \frac{\Delta T}{\Delta t} + P_{loss} \right) \right)$	0.2 pts
	Writing that $\alpha = 0.5$	0.3 pts
	κ range in $\left[W / (mK) \right]$: $376 \le \kappa \le 416$	0.3 pts
	$356 < \kappa < 376 \text{ or } 416 < \kappa < 436$	0.2 pts

MS2-4

Part D: Thermal conductivity of multiple metals (1.0 points)

D.1	Writing temperature with units	0.1 pts
D.2	Temperature measurements (0.2 pts)	
	Measurement time is greater than 15 minutes	0.1 pts
	Correct calculation of $\Delta T / \Delta x$ using $28mm$ spacing	0.1 pts
D.3	Calculation of κ for other metals (0.7 pts)	
	general form of $\kappa_{\alpha} = \kappa_{copper} \cdot \frac{Slope}{(\Delta T / \Delta x)_{\alpha}}$	0.1 pts
	Weighted average: 1:2 and 2:1 average between coppers (correct direction, see solution)	0.4 pts
	Weighted average but wrong weights	0.2 pts
	Slope from closest copper or simple average	0.1 pts
	$103 \left[W / (mK) \right] \le \kappa_{brass} \le 126 \left[W / (mK) \right]$	0.1 pts
	$215\left[W/(mK)\right] \le \kappa_{Aluminum} \le 263\left[W/(mK)\right]$	0.1 pts

Part E: The Wiedemann-Franz law (0.5 points)

E.1	Wiedemann-Franz law table (0.5 pts)	
	Calculation of Lorenz number, using absolute temperature	0.1 pts
	$2.12 \left[W\Omega / K^2 \right] \le L_{copper} \le 2.39 \left[W\Omega / K^2 \right]$	0.2 pts
	$2.13 \left[W\Omega / K^2 \right] \le L_{Brass} \le 2.71 \left[W\Omega / K^2 \right]$	0.1 pts
	$2.00 \left[W\Omega / K^2 \right] \le L_{Aluminum} \le 2.54 \left[W\Omega / K^2 \right]$	0.1 pts

Please note that this marking scheme might change, particularly the ranges.