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Movipol payvnteg (10 Movadeg)

OL Loxupol poévigoL payviteg elvat kataokeuaopevol amd kpaua NdFeB mou xapaktnpiletat amno évav
TIOAU €upU BPOXO UOTEPNONG, £TOL WOTE N Payvrtion J va pmopet va BewpnBel otabepn o eva supl

, , . , . . _ , 7 2 ,
QAo EPApPOoywV. Z€ O0TL akoAouBel, uTtoBetoupe OTL J = 1.5T/p, OTIOU 1y = 4 x 1077 N/A", kaL 6tL n
HayVvATLON OAWV TWV HOVIHWY JayvnTtwy elvat Opoyevng.

H payvition opiletat wg n mukvoTNTA (WG TTPOG TOV OYKO) TNG HAYVNTLKIG SUTOALKIG POTTHG TNG UANG. Ymodelén
1. H akoAouBn todtnta pmopel va @avel xproun:

Yrééetén 2. To payvntikd medio ou Snploupyel Evag o@atplkdg apyvrtng lval TavopoLdTUTIO PE EKELVO
€VOG onUELaKOU SLrtdAou. To apyvnTikd TeSio TTou SnuLoupyolV HayviTeqg pe GAAa oxrpata yivetat Loo-
S0vapo e ekElVO EVOG onpELAKOU SLTOAOU PHOVO O€ aTTOOTACELG TTIOAU PEYQAUTEPEG amd TNV SLAPETPO
TOUG.

Yrodelén 3. Ta nAeKTPLKA Kat pJayvnTika edia mou apdyovtal armo onUELaKA NAEKTPLKA KAl PayvnTika
SimoAa ekppalovtal WG CUVAPTATELG TWV CUVTETAYHEVWVY KAL TNG NAEKTPLKNG KAL JAyVNTLKAG POTING avTi-
otolya. Ta medla autd elvat tapopoLa, SNAadr PTIopoUHE va eKPPACOUPE TO €va TToANAAaoLaadovtag
TO GANO pe pLa otabepa.

Yodelén 4. To emaywpevo TeESLo TTOU OPEINETAL O OPLAKI] CUVONKN PTIOPEL TIAVTA va avtikataotabel
amnd pla statagn mnywv TomoBeTNUEVWY EKTOC TWV KABOPLOPEVWY oplwv.

Mépog A. AAANAeTtiSpacn payvntwy (4.5 Movasdeg)

‘Otav n amootacn amno évav Jayvrtn ivat oAU peyaAutepn amd to peyebdg Tou, TO HayvnTko Tedio
TIoU SnpLoUpYeiTaL Ao aUTOV PTIOPEL VA TIPOOEYYLOTEL PE TO PayvnTIKO eSO M TNG SLTOALKAG POTING
Tou.

B_ Mo o= =
B = 47‘(’]"3 (QmH — mL).
ME r = |7, KaL TNV SLTTOALKN) POTIA AvaAUpPEVN 0€ U0 CUVIOTWOEG O€ CUVLOTWOEG TIApAAANAa Kat kKabeta
OTO AKTLWVLKO Stavuopa (8€onc) 7 ou oxedladetat amnd to 6{moAo wg To onpelo mapatnpnong, m = m, +
m

Il

A1 Na Bpeite To peTpo TG SUvapng aAAnAemiSpaong petafu Suo opoagovika to-  0.6pt
TIOBETNHEVWY KUALVEPLKWY PayvnTwy SLAPETPOU d = 20 mm KAl TIAX0oUG h =
2mm, JayvnTtlopEVWY TIapdAAnAa Tipog Tov agovd Toug, av n andotacn HeE-
Tafl TwV KEVTPWY TV payvntwy elvat L = 20 cm. Mmopeite va umoBeoete OTL
L>d,h.
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A.2 € amooTdoeLg oAU peyallTepeg amo £, to medio ou Snpoupyet o payvitng  0.4pt
amd 1o epwtnua A.1 glval to 810 pe autd Tou Snuloupyeital amd Eva KUKALKO
pevpa. Na uttoloyioete to 1.

A3 Na umoloyioete tnv Suvapun aAnAeniSpaong petagl Twv payvntwy yta tnv  1.0pt
Sdlata&n tou epwtiuatog A.1, yua A.1, ywa L = 5mm. Mmiopeite va Bswprioste
ottd > L > h.

A4 MavopoLldTUTIoL o@atpLkol payvnTeg SLapétpou § = 5mm, , Ttou S€xovtat apot-  1.0pt
Bata payvntikn €AEn, oxnuatiouv pLa ahucida. Moo glval To PHEYLOTO ETILTPE-
TIOPEVO PAKOG [
yla pla tétola aAuciSa wote va pnv oTtaeL amo to BApog Tng otav tomobeTeitat
KATW amo Tov avwtato payvrtn; H mukvétnta twv payvntwyv NdFeB eival p =
7500 kg/m3.

A.5 Oewpnote TV aAucida amo to epwtnpa A.4. Na ypalete pla ékppaon ytato  1.5pt
METPO TOU payvntkoL Tiedlou B-o€ €va onpelo €otw P Tou Bploketal o€ amod-
otaon r amnod eva éva akpaio onueiLo, £0tw O, TNG aAucidag, Pe Tn ywvia Jetagu
NG aAuoidag kal tng eubelag O va slval § (BA. emdpevn €lkova), uttoBEtovtag
otL
I> rkatrsing > é.

g
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Mépog B. ANANAeTtiSpaocn pe oLdnpopayvrteg (3.5 Movasdeg)

Ag UTTIOBE00UPE TWPA OTL EKTOG ATIO TOUG HOVLHOUG HayVATEG SLOBETOUPE TIAAKEG KATAOKEUAOHEVEG aTIO
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oLSNPOoPayVNTLKO UALKO, TIAPOHOLO PE EKELVO TIOU XPNOLUOTIOLELTAL OE TIUPFVEG PETACKNPATLOTWVY. ZTLG
TIEPLTITWOELG TIOU Hag eVSLa@Eépouy, uttopel va BewpnBel dtL €xeL otabepr) aMAG TIOAU PeYAAn OXETLKN
HayvnTikn damepatotnta p ~ 10°.

Yrééetén 5. Meydhn Slamepatdtnta onpaivel dTL oL SUVAPLKEG YPAPPEG TOU TTESLOU KOVTA oTnV §WTEPLKNA
ETILPAVELA EVOG AVTLKELPEVOU KATAOKEUAOHEVOU aTIO AUTO TO UALKO, elval oXeS0V KABETEG OTNV ETILPA-
VeLa. AuTO glval TapOPoLo PE TN CUPTIEPLPOPA TWV SUVAPLKWY YPAPHWY NAEKTPLKOU TTeS0U KOVTA 0TNV
€EWTEPLKN ETILYPAVELA EVOG aywyoU.

B.1 ‘Evag o@atplkdg payvitng amod to epwinua A4 Bploketal os andotaon s = §  1.0pt

amo pia oldnpopayvntikr TAGKa PEYAAOU TIOXOUG Kal ATIELPOU PRKoug (BA.
®UMo Amtavtricswv). H payvrtion tng opaipag elval TpooavatoAlopévn Ka-
Beta otnv MAAGKA. Na oxeSLACETE TLG SUVAMPLKESG YPAUMES OTN SLATON TIou Qal-
vetatl oto PUANO ATTAVTHOEWV. L€ aUTO To oXNua, arekovi{ovtal Tpla onueia
(oupBoAilovtal pe 1, 2 Kat 3). Oa TIPETIEL VA OXESLATETE TLG SUVAULKES YPAPHES
Tou SLEpyovtal amd kabeva amod autd ta onueia og GAo To PAKOG Toug, SnA.
000 XWpPAEL 0TO OXNHa.

B.2 'EOTW TwpPaA OTL O CYALPLKOG PHAYVHTNG EPXETAL O AUEON EMAPN HYE TNV TAAKaA.  1.0pt
Mota elvat n katevBuvaon Tou SLaVUCHATOC PayVrTLONG TOU GYALPLKOU PJayvrtn
o€ euoTadn) LooppoTILa Kal TToLa elvat N KABeTn SUvVaun TTou aoKe(tal HETagl Tng
TIAGKAG KAL TOU payvriTn; Na OnUELOTE TLG CWOTEG KATEUBUVOELG E Eva onudast
(tick) oto avtiotolyo TAaiolo Tou PUAAoU ATtavtriocwyv. OL AavBaopEVEG eTTLAO-
YEG Ba pewwoouv tn Babuoloyia oag,.

B.3 Na uttoBeoete Twpa OTL £vag payvitng anod 1o epwtnua A.1 tomobeteitat ava-  1.5pt
peoa o€ SU0 PEYAAOU TIAXOUG KUKALKEG OLENPOPAYVNTIKEG TIAGKEG SLAPETPOU
D = 2d €10l WOTE oL €TUTIESEC ETLPAVELEG TOU Payvrtn va Pplokovtal o€ (Ja-
KPOOKOTILKN) £Tta@n PE TLG TIAAKEG. OL TpELg Slokol elvat opoa&ovikol. Na Bpeite
TN payvntikn SVvapn F ou ackeltat og kaBe AAka. ZupBouAn: Mmopel va ape-
ANOETE TO PayVNTLKO TIESLO £EW attd TLG OLENPOMAYVNTLKEG TIAGKEG Kal £Ew aTto
TO Kevo avApeod Touc.

MéEpog C. (Avti) ZLénpopayvntikn tagn (2 Movasdeg)

OL HayVNTLKEG LELOTNTEC TWV UALKWVY OQEINOVTAL OTLG HAYVNTLKEG SUTTOALKEG POTIEG NAEKTPOVIWVY KAL ATO-
MKWV TIUprVwv. EAv oL 8LtoALkég pottég pooavatoAidovtat tapdAAnAa peta&l toug, To Tedio Tou én-
HloUpYELTaAL aTIO AUTEG EVIOYUETAL — aQUTA €lval N CUPTIEPLYOPA TWV OLENPOPAYVNTIKWY UALKWV. ATIO
TNV AAN, av yla KaBe SIUToAn poTIr UTIAPXEL PLa avTmapAAANAn SUTOALKI POTI OE PLKPr amootaon,
Ta edla aMnAoavatpouvtal — autr €lval N CUPTIEPLPOPA TWV AVTLOLENPOPAYVNTIKWY UALKWV. ITNV
ouvExELa, €§eTACOUPE Evav TIOAU PHEYAAO apLBO OPALPLKWY JayVNTWV TOU EpWTAHATOG A4, Statetaype-
VWV 0TOUG KOPBOUG EVOG SLoSLACTATOU TIAEYHATOG. AKOAOUBOUV TIPAYHATIKEG PToypaieg Slatdfewv
o€ evotadr) Loopportiia. Na urtoBéoete 6TL OAa Ta Stavuopata payvitiong Bplokovtat oto emninedo Tou
OXNHATOG. ZTOUG UTIOAOYLOPOUG 0ag va AABeTe UTtOYn TNV aAANAETiE paon HOVO PE TOV TIANGCLECTEPO YEL-
Tova (0TO apLoTePd TUNHaA tou oxruatog C.1, KABE payvrnTng £XEL TEOOEPLG TIANOLECTEPOUC YEITOVEG Kal
ota 6e&Lo Tunpa €EL).
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c.1 Na Sel&te TIg SLeUBUVOELG PHayvrTLONG TWV PayvNTwy oTo apakdtw oxfua. Aev  0.8pt

{nteltai va amodeifete 6tLn Stata&n mou potelvete elval n povadikn duvartn.

Oa mpEmel OPWC va altloloynoste otL n Stdtagn mou mpoteivete elval dvtwg
guotadng.

Na uttoAoy(o€Te TNV EVEPYELA TIOU ATTALTELTAL YLA VA ATIOPAKPUVOUE €vav pa-

yvtn (mou Bploketal og onpelo KATIOU OTO PEGO TOU TIAEYHATOG) ATtd aUTO TO

TIAEY U@, UTtoBETOVTAC OTL OL AANOL JayVITEG TIAPAEVOUV akivnToLl. AUTO TO Ho-

vtelo Slatagng avtiotolyel o€ Tagn oLdnpPoPayvNTLKWY ] € aVTLoLEnpopayvn-

TIKWV UALKWV;

C.2 Na amavtroste otLg (8leg pwtroslg Onwg oto epwinpa C.1 ywa tnv didtagn  1.2pt
Ttou aivetal oto ak6AouBo oxnpa.
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Mépog A. AAAnAemtispacn Mayvntwv (4.5 Movaseg)

A.1 (0.6 pt)

(E&lowon) F =
(Twn) F =

A.2 (0.4 pt)

(E&wowon) I =
(T I =

A.3 (1.0 pt)

(E§wowaon) F =
(Twn) F =

A.4 (1.0 pt)

(E&lowon) i =
(Tipn) 1 =

A.5 (1.5 pt)

(E§wowaon) B =

Mépog B. ANANAeTtiSpacn pe oLdnpopayviteg (3.5 Movasdeg)
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B.1 (1.0 pt)

B.2 (1.0 pt)

(E&lowon) F =
(Tepn) F =
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B.3 (1.5 pt)

(E§wowaon) F =
(Twn) F =

Mépog C. (Avt) oLénpopayvntikn ta&n (2 Movasdeg)

C.1 (0.8 pt)

(Twry) ATtattoUpEn vépyela =

++4

o4

(EELowon) ATtattoUpen evepyela =

Na uTtoypappioETE TOV OWOTO TUTIO TAENG: OLENPOPAYVNTLKN TAEN; avTlolsnpopayvnTkr tdgn

C.2 (1.2 pt)

(Twry) ATtattoUpEn evépyela =

(EELowon) ATtattoUpen evepyela =

Na uttoypappicete Tov owoto TUTIo TAENG: oLSNPoPayvNTLKN TAagn; avtiolsnpopayvnTkr tdgn
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General rules

Rule 1: Propagating errors are not punished except

(a) those cases when the (possibly intermediate) result is
clearly wrong and hence, the contestant has another op-
portunity to figure out that something must have gone
wrong, and could start searching for the mistakes. Ex-
amples (not limited to): dimensionally wrong answer;
obviously too large or too small numerical value; wrong
sign of the effect;

(b) for the calculation of numerical answers: marks
(usually 0.1 pts) for the numerical values are given only
when the underlying formula is correct.

Rule 2: if a contestant writes down a final answer (for-
mula) of a task, or an intermediate result needed to de-
rive the final result, the marks are not given even if the
formula is completely correct, unless it is judged that
that particular formula can be obtained from the basic
laws in a simple-enough-way so that could have been
done purely in mind, without using paper.

T1: Permanent magnets

Part A: Interaction of two magnets.

(A.1) Solution 1.

For all questions, note that spurious rounding (e.g.
rounding 2.4kA to 2kA) will incur a penalty of 0.1 points
lost per incident. Although such rounding does techni-
cally adhere to rules about significant figures, IPhO is not
meant to test one’s understanding of significant figures.
Such rounding is both unreasonable and makes check-
ing solutions much more difficult. Since the distance be-
tween the magnets is big as compared to their size, we
can approximate each of them as a dipole of magnitude

m= %d%} —0.75Am>.

Since the two dipoles are parallel to each other and to
the line connecting them, the interaction energy of one

of the magnets with the field of the other magnet is
. 2

—_B.m=-2""

mn 2 L3’

and by taking a derivative we obtain

dw  3uem?

Fi= g = ;£L4 ~ 0.21 mN.
a)m = Td*hJ 0.2 pts
bW=-B-m 0.1 pts
o) F =9 0.1 pts
d) Fy = S’ 0.1 pts

Answer: 0.21mN | 0.1 pts

Solution 2. The force between the magnets is found
by converting one cylinder into a superconducting ring.
The current in the ring is I = % = Jh. Consider a
small line element dI on the ring with a radial vector
joining from the dipole to the line element. The dipole
moment is decomposed into radial and tangential com-
ponent. By rotational symmetry along the co-axis, the

force on the ring is F = B,Ind, where B, is the mag-
netic field component lying in the plane of the ring at
its line element. From the given formula of dipole field,
|B,| = 2™ (2cos0sin 6 + sin @ cos g) = 3uemsnIcoss gy

stituting tan ¢ = & with small angle approximation for
sinf ~ 6 and cos @ ~ 1, one gets F = 3Lom-L

2w L4

a)m = Zd*hJ 0.1 pts
b)1=Jh _ 0.1 pts
Q) |B,| = 73“07"45;23“039 0.1 pts
d) Fy = 3pom” 0.1 pts
e) small angle approx.

or correct limiting behavior | 0.1 pts
Answer: 0.21 mN 0.1 pts

dl

(A.2) In the case of a homogeneous magnetization, the
molecular currents in the bulk of the material cancel out,
leaving only a surface current at the surfaces which are
not perpendicular to the magnetization vector. Hence,
there is a surface current on the side surfaces of the
cylinder. As the height of the surface is much smaller
than the radius, these currents can be approximated as a
ring current 7; the dipole moment wd*1/4 of the ring cur-
rent must be equal to the total dipole moment 7d?h.J /4
of the magnet, hence I = Jh =~ 2.4k A.

a) current around edge of magnet | 0.1 pts
coom=1IA 0.1 pts
d)I=Jh 0.1 pts
Answer: 2.4KkA 0.1 pts

Remark: Having established the analogy to an edge
current, one could instead find 7 by evaluating the mag-
netic field at some point (e.g. far above the current loop)
and matching to the given dipole result. Biot-Savart at a
point on the ring axis at some distance z >> d above the
loop gives

2m
2
Bl [TUZWI2, i,
23 z 823

(1)
0

Matching this to the dipole result from the previous part
gives I = Jh as above.

(A.3) Since the distance between the magnets is now sig-
nificantly smaller than their diameter, the force can be
approximately found as the force between two straight
currents I of length =d at distance L:

_ pol*d

pol?
d=
m 2L

= ~ 14 N.
2L

Iy
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a) Consider as straight currents | 0.3 pts
b)B = oL 0.3 pts
c) Iy, =ndIB 0.2 pts
d)F = “UQIde 0.1 pts
Answer: 14N 0.1 pts

(A.4) The chain will most likely break below the top-
most magnet because then the magnetic pull between
the magnets needs to compensate the largest possible
weight. Let the number of magnets be N + 1, and the
mass of a single magnet M = Zpi® ~ 0.5g; then the
weight of the magnets F' = M Ng is balanced by the mag-
netic force

1 pom?2m3

605%

 3uem? al
27t

— =
n
n=1

where m = £J§* ~ 78mAm? and we have assumed that
N > 1 so that we can assume in the sum N = co. From
the force balance we obtain

_ pom>m?
~ 60M gét

=~ 1320;

hence, the total length of the chain is N§j = 6.6m. Note
that N = 1320 is indeed much bigger than 1.

a) It will break at the top | 0.1 pts
b)M = Zps® 0.1 pts
) F=MNg 0.2 pts
dF =YooV L 0.2 pts
e)m=1%J§ 0.2 pts
771,271'3
£) 1= &5 0.1 pts
Answer: 6.6m 0.1 pts

Remark: if the sum is substituted with a finite sum as an
approximation, with two or three terms in it, full marks
are given. If only one term is kept, subtract 0.1 from d) or
f). Remark 2: 1t’s possible to get a range of final answers
depending on the approximations used for g, mass, mag-
netic moment, etc. Answers that round to 1300 balls
should definitely not be penalized, which corresponds
to a distance range of 6.25 - 6.75m. 1260 balls (6.3m) is
what you get with g=10 and mass = 0.5g; 1320 balls (6.6m)
is what you get with g=9.8 and a mass of 0.49g (or, with-
out rounding the mass and magnetic moment and can-
celling out the volume).

(A.5) Solution 1. Each of the balls creates magnetic field
of a dipole m; the magnetic dipole creates the same field
wich would be created by two magnetic charges, equal
by modulus to ¢ and of opposite sign, at a distance s =
m/q, assuming that this distance s is much smaller than
the distance from the dipole to the observation point.
Here it is convenient to select s = 6 (hence ¢ = m/d)
because in that case almost all the positive and nega-
tive magnetic charges overlap and cancel out each other.
The only ones which will not cancel out are the magnetic
charges at the chain’s endpoints. One of these charges is
very far so that the field at P is the field of a magnetic
charge at O:

pom  Jpod?
dwér? 2492

Hoq

Cdwr?

a) Idea of magnetic charges | 0.4 pts
b)g=m/é 0.4 pts
0) B= 2% 0.4 pts
d) B = Zd” 0.3 pts

The same scheme applies for solutions which work with
electrical charges, with a proportionality constant relat-
ing that field to the magnetic field of magnetic dipoles.
Then, the sub-score a) is given for the idea of calculating
the field of electrical dipoles (0.2 pts), with a correct pro-
portionality factor between the two fields, k = B/E =
pogo = ¢~ 2 (0.2 pts).

Solution 2. It is clear that from distances larger than
the diameter of a magnet, the shape of the magnets
doesn’t matter; what matters is only the total dipole mo-
ment as this is what defines the magnitude of the field
at large distances. So, we can substitute the balls with
cylinders of equal volume. Now, let us require the height
of these cylinders to be ¢; then the neighbouring cylin-
ders in the chain will be touching each other. As a re-
sult, instead of the chain of balls, we have a long homo-
geneous cylinder. Equal volume means that the cross-
sectional area of these cylinders A = Z4°. We know
from task A.2 that such a cylinder can be considered as a
long solenoid carrying surface density of bound currents
equal to J. So, the magnetic field inside it By = poJ, and
therefore, it carries magnetic flux ® = ByA = %62,qu.
We know that inside the solenoid, magnetic field is con-
stant, and outside, the field is zero. However, this is
valid only until the endpoints of the solenoid are far. All
that flux is released near each of the endpoints of the
solenoid. The released flux needs to satisfy the Maxwell
equations: the B-field needs to have no sources and be
potential. We know that the only solution in such a case
is a central isotropic field B = f(r)?, where r denotes
the distance from the endpoint and # — the correspond-
ing unit vector. From the Gauss law we conclude that

4mr2f(r) = ® = Z6%p0J, hence B = 28’

a) Idea of substituting spheres with cylinders | 0.4 pts
b)A = 242 0.2 pts
Q) ® = Z6%uJ 0.4 pts
d) B = &/4mr? 0.4 pts
e)B = J;jl‘;‘f 0.1 pts

Remark: for part a, give only 0.1 points if students make
the cylinder replacement but then fail to make any real
progress using it.

Solution 3. This solution follows the solution 2 up to
the point where we have a solenoid with surface cur-
rent density J. After that we observe that at any point
in space, the axial component of the magnetic field is

Q
B = uogJ—
Ho A’

where ) denotes the solid angle under which we can
see the interior surface of the solenoid, minus the solid
angle under which we can see the outer surface. This
can be derived easily from the Biot-Savart law: dB, =
to_idzdi x 7 - 2, where hats denotes unit vectors, d/ —

4mr?

an infinitesimal vector parallel to the surface current,
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and 7 — a vector pointing from the observation point
to a point on the solenoid. This can be rewritten as
dB, = 20, jdZx dl-7 = ;2o JdA-#, where dA denotes the
area of a surface element on the solenoid. To complete
our proof, it suffices to notice that dA -7 is the apparent

area of the surface element, dQ) = dA -7 /r2.

Now, at the point P, the outside and inside contribu-
tions to Q cancel out everywhere except for the circu-
lar opening of the solenoid. Thus, @ = Acosf/r? so

that B, = Z%% cos¢. Finally, we can use the Gauss
law to obtain expression for the radial component By
(with R denoting the radius in cylindrical coordinates)
of the magnetic field. Someone not familiar with vec-
tor calculus can calculate the magnetic flux @, through
a circle of radius Ry = rsind. Then, the cylindri-
cal coordinate R = ztan#’ so that dR = zcos—26'd¢,
and % = cos?¢'/z%. Therefore ®, = [2rRB.dR =
mu0d cos 6’ dg’ = 290" ging. We can see that this de-
pends only the spherical coordinate #; by considering
conical frusta with circular faces having the same polar
angle ¢ we can easily conclude that the magnetic field

. . 2
must be radial, i.e. B= B,/ cosf = "2‘2‘;‘2 .

a) Idea of substituting spheres with cylinders | 0.4 pts
b)A = £42 0.2 pts
¢) B, = ";1122 cos 6 0.4 pts
d) B= B./cosf 0.4 pts
e) B = Zd 0.1 pts

Solution 4. Finally, the solution could be obtained the-
oretically also by summing over all the fields of individ-
ual magnets. However, this is mathematically very de-
manding, therefore full solution is not provided here.
The first steps are as follows. (i) Writing the contribu-
tion B, and B, of a single magnet at distance z from
the point O to the axial and radial (in cylindrical coordi-
nates) components of the magnetic field; (ii) going from
summation of individual contributions to integration by
assuming linear density of dipoles p,, = m/é so that
dm = mdz/§; performing integration over > to find the
field components.

The mathematical derivation: A dipole at position z
dm = %dz generates a magnetic field (in Cartesian co-
ordinates):

. d .
dB. = dB,, cosf — dBy sing = M0 (2 — 3sin® 9’)
4’3
. 3uod .
dBr = dB,  sin0 + dBy/ cos 0 = HOd™ in 6’ cos 0
4’3

Where ' = /124 22 — 2rzcosf and sin¢’ = Z sin6 are
coordinates relative to the dipole dm. In order to sim-
plify the integration, do substitution: v = =25 then

rsing
' =rsinfvu? + 1; dz = r sin 0du.

Integration for B,:

wom [ 1
B,= [|dB, =—— dz—
/ aré Jy oz

<2_

- ’“‘077”2/ du [2(u2 +1)73/2 — 3 + 1)*5/2}
4mdr?sin” 0 J—cote

3r2sin® 9)

,r,/2

B Lo [ 2u 2u3 + 3u ro
drsr2sin? g (V2 +1 (W2 +1)32] .,
_ jpmcosd
4dr?

Integration for Bp:

BR:/dBR
3 7 COS 0 1 . 2
_ S (/ dz73-2,51n9 1—%sm29
0 T T T
> 1 - 2
—/ dsz-T—/sme\/l—%smze
rcosg T r r

4md

3uom udu
47ér2sin”® 0 Jeoto (u? + 1)5/2

Spom - —5/2 2

= dv(v+1 v=1u

8mor2sin® 0 Jeotz ¢ ( ) ( :
_ pomsing
N 4mor?

a) writing correctly B;, | 0.2 pts

b) writing correctly Bg. | 0.2 pts

c) dm =mdz/§ 0.2 pts

c) B, = 8 cosf 0.4 pts

d) Br = 245 sing 0.4 pts

e) B = kg 0.1 pts

Remarks: for c) and d), a partial credit of 0.1 pts can
be given for each of these integrals if the initial integral
is written correctly, but the calculation of the integral
is not performed or there are many mistakes. If only
few mistakes were made, subtract 0.1 for each mistake
made. If initial integral is written incorrectly, no points
are given. Points for e) are given only if the final answer
is completely correct.
Another remark: in the integration of Bp, if the change
of sign (of the cosine) is ignored, the correct answer
could still be obtained (because the extra parts cancel
out), but the derivation would technically be wrong.
Solution 5. It’s possible to perform the direct integra-
tion of the previous solution more easily using angular
variables in place of z. Let s = rsin be the distance of
closest approach of the line to P for convenience and ¢
be the angle from a point on the line to P (such that ¢ = ¢
at the end near P, ¢ ~ 7 at the other end). Then the addi-
tional magnetic field from a small component given by
do is

.3
fo SIN” ¢
dB="—"
47s3

.3
fo SIN” @
=————dmx
4ms3

(2 cos ¢(Cos ¢z — sin ¢f) — Sin ¢(Sin ¢z + cos ¢F))

(2de — dmL)

_posin® ¢ dm

p—1)2— in ¢f).
PP 2((3c0s” ¢ — 1)2 — cos ¢ sin o)
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Since s = —ztan¢ and dm = mdz/d, we have dm/d¢p =
sm/(8sin” ¢). Then

4B = O ((3c05% ¢ 1)25in gy — sin’ g7 cos 6do)
41s2H
and thus
¢:ﬂ‘
Ho™m _ 26 -1)2 — sin® gid si
B g (—(3cos? ¢ — 1)2d cos ¢ — sin” ¢rd sin ¢)
=6
_ pom 3 T . .3 ‘ﬂ N
_ _ n
Ho™m inZps in® 67
= - n n :
477326( cosfsin” 6z + sin® 67)

Putting back in our expression for s, we have

Mo . . R
B= -
4m~25( cos 6z + sin 0r)

(2)

which is the desired result.

a) writing correctly dB/d¢ | 0.5 pts
b) dm/d¢ = sm/(5sin” ¢) | 0.2 pts
) |B.| = pom/(4mr26) 0.4 pts
d) B = —cos 6z + sin 67 0.4 pts

Remark: for d, note that the coordinate system wasn’t
specified in the problem, so check what the student is us-
ing; the point is to get the “radially outward” (or inward)
idea.

Part B: Interaction of magnets with ferro-
magnetic materials.

(B.1) Due to the boundary condition at the surface of the
ferromagnet, the field lines must enter the plates almost
perpendicularly. Indeed, as it follows from the Ampére’s
circutal law, the tangential component of 5/, is continu-
ous at the surface of a ferromagnet; similarly, the Gauss
law for the magnetic field implies that the normal com-
ponent of the B-field is continuous. From these two facts,
one can derive the “refraction law” for the field lines,
tana = ptan s, where o and g are the angles between
the tangents of a field line and the surface normal, inside
and outside of the ferromagnetic, respectively. From the
fact that ¢ > 1 we can deduce that as long as « is not
small, 3 ~ 0. Those field lines which enter the plate
must exit it somewhere, this happens somewhere far-
ther away from the magnet, see the sketch below.

~

\

=

a) Field line 1 correct | 0.2 pts
b) Field line 2 correct | 0.4 pts
¢) Field line 3 correct | 0.4 pts

Remarks:

i) Subtract 0.1 both from b) and c) if the field line does
not enter the plate perpendicularly;

ii) Subtract 0.1 both from b) and c) if the field line does
not refract correctly;

iii) Subtract 0.1 from (b) if its segment rightwards of the
magnet is not shown (note that in the student answer
sheet, the magnet is to the right of the plate, not on top
of it as shown in the solution);

iv) Subtract 0.1 both from a) and c) if the field line does
not form a closed loop;

v) Subtract 0.1 from a) if the line touches or enters the
plate; 0.1 from b) if the line exits the plate; 0.1 from c) if
the line reaches the other side of the plate.

(B.2) The problem can be solved by introducing an im-
age magnet — a mirror reflection of the real magnet with
respect to the surface of the plate, with the dipole mo-
ment being both reflected and flipped. With this im-
age magnet, the boundary condition above the plate is
satisfied: the field lines enter the plate perpendicularly.
Hence, the force and torque exerted to the real magnet
are equal to the force and torque exerted by the image
magnet. The equilibrium is achieved when the dipole is
parallel to the field created by the image magnet which
is the case when the dipole moment is perpendicular to
the plate. Hence, leftmost boxes of the first and second
row need to be marked with a tick. The force is almost
the same as what was already found in part A(d), with
the only difference that now there is only the first term
in the sum:

3uom?
= omst = 5.9N.
a) Idea of magnetic image (even if . not flipped) | 0.3 pts
b) Correct direction of the image .J 0.2 pts
C)F = 35;;:;12 0.2 pts
d) F=59N 0.1 pts
e) each correct tick 0.1 pts
f) each incorrect tick -0.1 pts

Remark: if e) + ) adds up to a negative number, replace
the total score for those two parts by 0.

(B.3) Solution 1. As explained above, the magnetic field
lines are perpendicular to the surface of the ferromag-
netic plate. Since the gap is narrow as compared to its
width, the field lines are inside the gap almost straight.
Due to the Ampere’s circulation theorem it also means
that the field in the gap is homogeneous. Due to the
Ampeére’s circulation theorem, field outside the gap van-
ishes as the gap’s width tends to 0, so in the limit all flux
through the permanent magnet wraps around through
the gap; see the sketch of magnetic field lines. Now, let
us recall that the disc magnet is equivalent to a surface
current of density J along the curved surface of the disc.
Hence we can write the circulation theorem along the
loop defined by one of the field lines shown in the fig-
ure:

I= fﬁ-df’% (B1 + Ba)h/ o,

where B; and B; denote the flux density inside the per-
manent magnet and outside the magnet (but still inside
the slit), respectively. Here we have neglected the con-
tribution of the magnetic field inside the ferromagnetic



IPhO 2022

Theoretical problems: solutions. Language: English

plate to the integral because n is very big. Due to the
Gauss law, Zd*>B, = Z(D? —d?)B,; with D = 2d this yields
By = 3Bs. Thus BQ = I,uo/4h = JMO/4 = 0.375T and
By = 1.125T. In order to find the force exerted to one
of the ferromagnetic plates, we can notice that the force
does not depend on what is creating the magnetic field
and, hence, we can substitute the disc magnet with the
current 7 in a superconducting ring. Next we apply the
virtual displacement method and increase the distance
between the plates by dz. In the case of a superconduct-
ing ring, the magnetic flux through the ring is conserved,
and therefore, the magnetic field strength inside the gap
will remain unchanged during the virtual displacement.
With all this information we are ready to calculate the
change of the magnetic field energy. The magnetic field
energy inside the ferromagnet can be neglected because
its density is ca p times smaller than inside the gap. So,
the energy is changed only because the volume of the
gap is changed:

™ [@2B2 1 (D? — d?)B2dx = (2?’;32#)(1

daw =
8o

which means that the force
dW 3r

B242% = 2 N
& 2 Bsd 32 J 0d? =~ 210N.

a) B in the slit is homogeneous 0.2 pts
b) B in the permanent magnet is homog. | 0.2 pts
¢) B in slit and in perm. magn. is normal | 0.1 pts
e)l = (B1 + Bz)h/uo 0.1 pts
f) 2d?B, = 2(D? — d*)Bs 0.1 pts
iydw = 8“ [d2B? + (D? — d?)B3|dx 0.3 pts
jF=9v 0.1 pts

K) 322 o d? 0.1 pts
D F ~ 210N. 0.1 pts

Solution 2. The second solution follows mostly the first
one, and deviates only after the fields B; and B, have
been found. Now we do not introduce the fictitious su-
perconducting loop, and instead calculate carefully all
the changes to the magnetic field energy during virtual
displacements. Now the current around the perimeter of
the permanent magnet is fixed to 7 as its magnetisation
is assumed to be constant. We can still use the previous
expressions for the magnetic field energy if we consider
the distance h between the plates to be a variable:

wd?h
810

31 po
4h

Wy = [Bi+3B2], B; = 3B, =

= Wr="35

In addition to the change of the magnetic field energy,
we also need to take into account the energy of the per-

Suomd?I?

manent magnet in the magnetic field,

31 1o

Wmimeli 1h

™
——d*I - = —2W
4 b

hence the total energy W = —1;. Now we can find force

as F = -4 %, yielding the same result as before.
Notice that if we didn’t take into account the energy of
the dipole then we would have obtained the correct an-
swer by modulus, but with a wrong sign — we would

have had repulsion instead of attraction of the plates.

a) B in the slit is homogeneous 0.2 pts
b) B in the permanent magnet is homog. | 0.2 pts
¢) B in slit and in perm. magn. is normal | 0.1 pts
e)l = (Bl + Bg)h/uo 0.1 pts
f) Zd*B, = £(D* - d*)B 0.1 pts
i) Wf = = [d*B} + (D* — d*)B3]h 0.1 pts
DW= —Wf 0.2 pts
k) F= dh 0.1 pts
D) 220 pod? 0.1 pts
m) F ~ 210N. 0.1 pts

Remark: those who do not take into account the energy
of the dipole will be given zero points for j), k), 1), and m).

Solution 3. There is a more intuitive way of finding
the field distribution. Using carefully the analogy be-
tween electric and magnetic dipole fields, one could con-
vert the problem into a permanent electric polarization
inserted between two conducting plates. From similari-
ties among Maxwell equations, it could be observed that
E ~ B, D =~ H and P ~ M, with some prefactors involv-
ing permeabilities and permittivities. Consider putting
the smaller capacitor inside the conductor plates, the
charge would induce opposite charge that makes field
lines perpendicular to the conductor. In addition, there
should not be net charge on the metal plates upon in-
sertion of the smaller cylinder. Hence, there is again an
uniform charge density of opposite charge on the metal
plate spreading over the larger region. Effectively, for £
field, it is equivalent to spreading the original charge on
smaller plate onto the larger plate Because the radii has
ratioof 2, F = 456 , Dy = 4S ,and D; = 0(1 —1/4) =
3D,. This agrees W1th Bs,, B; in previous solutions. The
rest easily follows. (There are confusions about B or H
but most are due to the definition of polarization charge
or current being considered free or not, a self-consistent
derivation would be sufficient.The close-to-centre part of
the field of electric and magnetic dipole is opposite and
one should be careful about this effect inside polarisa-
tion when utilizing the analogy.)
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a) correct analogy arguments 0.2 pts
b) correct charge distributions 0.2 pts
c) E is uniform 0.1 pts
e) correct D expressions 0.1 pts
f) correct conversion factor 0.1 pts
DW= ﬁ[dzB% + (D? — d?)B23]h | 0.1 pts
) W = =Wy 0.2 pts
k) F=4% 0.1 pts
D) 2202 pod? 0.1 pts
m) F ~ 210N. 0.1 pts
E or H field

I A U
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Solution 4. (Incorrect) A solution that has been submit-
ted by a few students uses an infinite number of images
of the permanent magnet. This forms an infinite rod,
which they assume gives the same magnetic field as a
normal magnetised rod would, 0 everywhere outside it.
However, since the plates are finite, the magnetic field
outside would actually be non-zero, and would need to
be calculated according to Solution 1. In this case, only
marks corresponding to a), b) and c) in the scheme of So-
lution 1 should be awarded, i.e. 0.5 marks. If someone
doesn’t assume the field outside to be 0, give marks for
the subsequent calculations according to solution 1.

Part C: Model of ferromagnetic and anti-
ferromagnetic materials.

(C.1) Solution 1, Since the task is about finding only one
configuration of dipoles, we can just try looking for con-
figurations satisfying the requirements. The simplest ap-
proach is to start construction with the chain of magnets
described in part A.4: if all the dipoles are directed par-
allel to each other and parallel to the chain, the system is
obviously in equilibrium. Now, two such chains can be
parallel to each other, and they can be also antiparallel.
In both cases, each of the balls is in a stable equilibrium
in terms of rotations. Indeed, each of the balls from the
left and from the right contribute the field B, = rho,
while each of the balls from above and below contribute
B, = £1B,, where & denotes a horizontal unit vector; "+’
corresponds to antiparallel rows, and ’—" — to parallel
rows. Since By < By, the sum of the four contributions is

always pointing in the direction of # which ensures the
rotational stability of the magnet. Attraction force be-
tween two neighbouring rows is contributed only by the
vertical nearest-neighbour pairs of balls, so we can just
calculate only the interaction force between two such
magnets. If two such balls were to be at distance y, the

interaction energy would be W = ii;’;.f so that the y-

directional force F, = %—,V; =T 3572222 . This means that the
two balls attract if they are antiparallel and repel other-
wise. This brings us to the conclusion that the order must

be antiferromagnetic, shown below in the sketch.

The work needed to pull out one of the magnets is eas-
ily found as its interaction energy with the four near-
est neighbours, with minus sign, i.e. W = B - m, where
B =25, +2B, = 3™ so that W = 20m” — 29 mJ.

a) Fig: left and right parallel magnets attract | 0.1 pts
b) Fig: top and bottom antipar. magn. attract | 0.1 pts
¢) B from the 4 neighbours || 772 = no torque | 0.1 pts
d) correctly marked 12 arrows 0.1 pts
e) antiferromagnetic 0.1 pts
HW=B-m 0.1 pts
g W = Spom” 0.1 pts
h) W = 29mJ 0.1 pts

Remarks: no marks for d) if any of the magnets has a
wrong direction or has no arrow. No marks for e) if the
score for d) is zero.

Solution 2, 1t appears that there is another stable con-
figuration, see figure below
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In order to show that this configuration is stable, too,
let us find the direction of the magnetic field at the po-
sition of one of the balls, the ball marked with A in the
figure, due to its four neighbours. Using the formula for
the magnetic field of a dipole, we can see that the balls B
and D create both field b(& + 23), where & and ¢ are hori-
zontal and vertical unit vectors. Meanwhile, both C and
E create field b(2% + ¢) so that the total field is 6b(2 + §);
this is parallel to the dipole moment of the ball A which
means that no torque is exerted on it. What is left to do
is to calculate the interaction force between two neigh-
bouring balls, e.g. A and B. One way to do it is to decom-
pose the both dipoles into vertical and horizontal com-
ponents: ma = mg(2 + g and mp = mo(—2 + g, where
mo = m/+/2. One can easily see that the pair of dipoles
moZ and —mgZ attract, and the same applies to the pair
moy and —mgg. It is also easy to see that there is no hori-
zontal component for the interaction force between the
remaining pairs, moi with mgeg and meg and —mez. A
little more efforts are needed to see that the horizontal
component of the interaction force is also zero. To that
end one can calculate first the torque 745 exerted by
dipole A to B with respect to the centre of the ball B, and
the torque Tz 4 exerted by B to A with respect to the cen-
tre of the ball A; one can easily see from symmetry that
Tap = —Tpa. Due to Newton’s third law, with respect to
the centre of the ball A, the sum of torques exerted by
B to A and by A to B must be zero; it can be expressed
as Ty +Tga + F,0 = 0, where F, denotes the horizon-
tal component of the force exerted by A to B. From this
equality we can conclude that F, = 0. So we found that
each of the neighbouring balls attract each other, hence
the whole configuration is stable.

a) Showing: neighbouring magnets attract 0.2 pts
b) B from the 4 neighbours || 7 = no torque | 0.1 pts
¢) correctly marked 12 arrows 0.1 pts
d) antiferromagnetic 0.1 pts
e)W =B 0.1 pts
f) W = Spom’ 0.1 pts
g W =29mJ 0.1 pts

Remark: no marks for c) if any of the magnets has a
wrong direction or has no arrow. No marks for d) if the
score for c) is zero.

(C.2) Now we need to repeat the steps done for the pre-
vious question, with the only difference in the mutual
placement of the magnets. Also, each of the magnets
of the top row interacts now with two magnets of the
bottom row with the three magnets forming a equilat-
eral triangle. Since we’ll be going to use virtual displace-
ment method, we consider the interaction of three mag-
nets forming an isosceles triangle as shown in the figure;
while the base of the triangle remains fixed during vir-
tual displacements, the length of the sides [ will change.

First we need an expression of the magnetic field caused
by the two bottom magnets at the centre of the topmost
magnet. Due to symmetry, this field must be horizontal;
we can use the formula provided in the problem text for
finding it. The dipole moment of the left-bottom magnet
needs to be divided into components parallel and per-
pendicular to the radius vector drawn from its centre
to the centre of the topmost magnet, m; = mcosa and
m, = mSina. Hence, we can express the resultant z-
component of the magnetic field as

Ba, = %(%ﬁﬂ cosa —m, Sina) = %(3 cos® o — 1).
The magnetic field due to both magnets is therefore
2B3, .

As the first thing, we can now analyse the stability of a
magnet with respect to rotations. As before, we assume
that the magnets in one single row are parallel to each
other, and the magnets at the two neighbouring rows
are either parallel or antiparallel to each other. In either
case, the rows at the top and at the bottom from a given
magnet are parallel to each other; let them be oriented
along #. Then, each row contributes 2B3,% to the total
field at the position of our magnet. The total field has
also contributions B,, = +52% from the left and right
magnets; here ‘+’ corresponds to the ferromagnetic or-
der, and ‘—’ — to the antiferromagnetic order. Keeping
in mind that / = § and cos o = § the total field is

BS = 4§5x + 2§4x = 5 _ 3

This is parallel to the given magnetic dipole for both ‘+’
and ‘—’, which ensures stability in any case.

With m = +#m and y denoting the height of the isosce-
les triangle, the vertical component of the interaction
force of a magnet with a magnet in the bottom row can
be found as

~_dl 3ugm?

. dl d pem? (362
ay B 1) = ay 16m

T U dydl axd \ 42

here we have used cosa = % and upon taking deriva-
tive, substituted [ = §. For this force to be attractive, we
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need a minus sign which corresponds to the ferromag-
netic order (keep in mind that g—; > 0). Now we areready
to mark the direction of the dipoles on the sketch, see the
figure below.

The work needed to pull out a magnet is found simi-

larly to the part (C.1):
- . 3u0m2
W =DBs -mg = e = 15m].
a) BZS.T/ = ﬁffj: (3cos?a—1) 0.2 pts
b) B4x = 2ig3 0.1 ptS
c) Bs = 4B3, + 2By, OlptS
d) Bs = 525 (-5 £2) @ 0.1 pts
e)Fs, = & By -1 0.1 pts
f) oy = T4 Spom 0.1 pts
g) F;, attractive 0.1 pts
h) correctly marked 12 arrows | 0.1 pts
1) ferromagnetic 0.1 pts
PW = 35;;:;;2 0.1 pts
K)W = 15mJ 0.1 pts

Remark: + signs are not required as long as the correct
sign corresponding to the ferromagnetic order are used:
meaning, + sign in f) and - sign in d). No marks for e) if
the score for d) is zero.





