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Olympiad

Greek1 (Greece)

NoOpoL KALpakwong (8 Movasdeg)

OL vopoL KALPHAKwaoNg Tieplypd@ouv TNV padnuatiki cuvdptnon HETagl SU0 PUOLKWY TTOCOTATWY TWV
oTIolWV N KALYaKA TwV SLacTACEWV TOUG SLAPEPEL CNPAVTLKA. TN CUVAPTNON QUTH KABE TLUr TNG pLag
TI0OOTNTAG AVTLOTOLXEL PE pla povo Twn TNG AAANG. Auth n cuvdptnon PTopel va slvat eKBETIKAG pop-
@NG, AAAA UTTAPXOUV KAl AAAEG TIEPUITTWOELG. ZUXVQ, Elval adUvato va TipoasLopLoTouV akpLBELG ekPpa-
0ELG, AAAG aKOPN KAl TOTE TIapapéveL Suvatr n eEaywyr] TwWV VOPWV KALUAKwoNnG.

Mépog A. Zrtayy£tt (2,0 Movasdeg)

A1 210 POPRANpA autd n TTIOCOTNTA TIOU TIPETIEL VA CUCXETLOTEL PE VOHO KALPAKW-  2.0pt

ong lvat To PEyLoTo PrKkog to ottolo pmopel va €xeL €va pakapdvl TUToU oTtay-
YETL XWpPLg va omdeL uttd tnv enidpacn Tou Bdpoug Tou yla SUo pakapovia dLa-
(POPETLKNG SLapeTpou. ‘Eva pakapdvl TUTIoU oTtayyeTL SLapéTpou d LooppoTiel
0pLOVTLA OTNPLYHEVO OTO PECO TOU. AV N TLUN TNG SLapetpou eivat d = 1 mm,
TO PaKaPOVL OTIAEL UTIO TNV €MLSpacn tou BApoug ToU JOALG TO PFKOG Tou [ Tia-
peLTNV T I = 50 cm. Na UTIOAOYLOETE TNV avTloTtoLyn PEYLOTN TLUI) TOU PRKOUG
I’ evdg (8lou TUTIOU pakapoviou Pe SLAPETPO d” = 1C¢m, WOTE va PNV oTtdeL
UTIO TNV emidpacn tou Bapoug tou.

&/—\‘

Mé£pog B. KAOTPO KATOOKEVAGHEVO Ao Appo (2,0 Movasdeg)

B.1 210 POLBANPA aUTO N TTOCOTNTA TIOU TIPETIEL VA OUCYETLOTEL PHE VOO KALPUAKW-  2.0pt
ong elvat n TP Tng SUvapng yLa tnv oTola KATaoTpEPETAL £Vag TTUPYOG Ka-
TOOKEUAOHEVOC ATIO UYPr AUHO yLa U0 TTUPYOUC KATACKEUAOHEVOUG ATIO XOV-
SPOKOKKN KAl AETTTOKOKKN Appo avtiotolya. O PECOG OYKOG TWV KOKKWVY TNG
XOVEPOKOKKNG Appou eivat 10 popeg HeyaAUTEPOG ATIO AUTOV TNG AETTTOKOKKNG
Appou. H uypr) AETTTOKOKKN APPOG KAl N Uypr} XOVEPOKOKKN APHOG £XOUV TNV
BEATLOTN TIEPLEKTLKOTNTA OE VEPO (SNAASH UTIOBETOUE TN PEYLOTN AVTOXT) TWV
KATAOKEUWY TWV PLYHMATWY AUPOU VEPOU Kal OTLG U0 TIEPUTTWOELG) KAL XpNnotL-
HoTIOLOUVTAL YLA TNV KATAOKEUH SUO TIAVOUOLOTUTIWY KUALVSpwv. H avtoxr tou
KABe evdg KUALVEpou Sokipaletal otav autodg ieotel petagl Suo apdAAnAwy
TIAAKWV. O KUALVEPOG TIOU €lval KATAOKEUAOUEVOG aTtO XOVEPOKOKKN QPO Ka-
TaotpePetal POALG n SVvapn otig TAAKEG yivel F, = 10 N. Na uttoAoyloete Tnv
avtiotolyn T tng SUvapng F; yLa TNV oTola KAaTaoTpEPETaL 0 KUALVEPOG aro
AeTTOKOKKN Aupo. Na ayvoroete tnv enidpaon tng Baputntac.
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Mépog I'. AractpLko ta&idt (2,0 Movadeg)

c.1 2to TPOPANPA autd n TIOCOTNTA TIOU TIPETIEL VA CUCYETLOTEL PJE VOUO KALPA-  2.0pt
KWaong elvat n arootacn mou Pmopel va tagléedel va SLactnUoTAOLO OToV
evaropeivavta avapevopevo Xpovo (wng tTwy EMPBatwyv tou yla duo Sla-
oTNUOTAOLA TIOU TAELEEUOUV PE SLAWYOPETLKN ETILTAXUVON. To SLacTnUAOTAOLO
HLag SLactpLkig §epelivnong TAELSEVEL PE ETILTAXUVON OTABEPOU PETPOU g =
10m/s?, (auth eivat n emtdyuvon tou SLacTtnUOTAOLOU 0TO aSPaVELAKO oU-
oTNPa avagopag otou to dtactnuomAoLlo Bploketal otiyplaia og npepia). OL
eMLPBATEC TIPETEL va lval og Bgon va emotpéPouv otn ' otov evamopeiva-
VTA H€0A OTOV aVapEVOHEVO Xpovo {whG Toug o oTtolog elvat 50 £tn. H péylotn
amoéotacn armo tn 'n ou Ptavel To dtactnuoémAoLo eival d. Eav n emtdyuvon
auénbel o ¢’ = 15m/s? , To SLaotnUOTAOLO PTtopEl va YTdoeL o pia peyall-
TeEPN amnootaon d’. MNMolog elvat o Adyog d’ /d?

Yiodelén 1. Mmopel av BEAETE va XpNOLUOTIOLOETE TOV TUTIO ABPOLONG OXETL-
KLOTLKNG TayxUTNTAG, WoTOo0, UTIAPXOUV OUWG KAl AANEC TIPOCEYYLOELG.
YTi06€LEn 2. Towg ETUAEEETE VA X PN OLUOTIOLOETE unepBo)\LKéq OUVOPTAOELG TTIOU
opifovtal wg egnG: coshz = L (e” +e™*), sinhz = %(e”’ —e™®), tanhx = gi;g].
YnoSSLEr] 3. Ava?xoya HE TNV npooeyytor] oag, pmopel va xpsLaoteLts éva n Te-
pLoodtepa amnoé ta olokAnpwparta: [ 4 Ly =atanhz +C, [ 1+ ~ =asinhz + C,

J sinhzdz = cosh z + C, émou asinh z kat atanh z elvat oL avtiotpopeg cuvap-
TNOELG TWV aVT{OTOLXWV UTIEPBOALKWY CUVAPTACEWV.

Mépog A. Auto to aicOnpa Bubiong (2,0 Movaseg)

D.1 Mua oupmayng EUALVN owaipa aktivag r, EMUTAEEL 0TO vePO. Av ayvorjooups  2.0pt
™V PPN, 0tav n oPaipd PETATOTILOTEL KATAKOPUYA, Ba EKTEAEL PLKPEG TAAA-
VIWOELG, N ouxvoTNTa Twv oTolwv elvat w,. AapBdvovtag umtogn tnv teLpn
(LEwdeg ota vypd), petd amd pla PLkpry KATaKOPUYN apX LK PHETATOTILON, N OU-
XVOTNTA TWV POLVOUCWY TAAAVTWOEWV (e UTtoKplolun andoBeon) elval otnv
TpaypatkotnTa 0.99 w, . Na uttoAoyloete TNV EAAXLOTN TLHI TNG AKTLVAG 7min
pLag EVALVNG oalpag TIoU OTAV ETILTTAEEL OTO VEPO KAl PETATOTILOTEL EAAPPWG
KATaKOPUYQ, eKTEAEL PBIvoUoEG TAAAVTWOELG PLKPOU TIAATOUG. YTddetén: n 0-
vapn avtiotaong (Adyw tng TPLRNG HeTagL owHATog KAl pEUOTOV) TTOU AokKeltal
o€ €va 6£80PEVO owa Elvat avaloyn PE TNV TayxUTnNTd ToU o€ OXEON E TO PEV-
OT0 Kal JE ToV ouvteleotr) LEwSoug 7 Tou peucTtol Péoa oto otolo Kuveltat H
povada petpnong tou cuvtedeotn) LEwdoug etvat kg/(m - s).
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Greek1 (Greece)

NopoL KALpdkwong (8 Movasdeg)

Mépog A. Zrtayy£tt (2.0 Movaseg)

A.1 (2.0 pt)

=

Mé£pog B. KGoTpo KATAGKEVAGHEVO ATIO Appo (2.0 Movadeg)

B.1 (2.0 pt)

Fy =

Mé£pog C. AtactpLko ta&idt (2.0 Movadeg)

C.1 (2.0 pt)

d'/d =

MéEpog D. Auto to aicOnpa BudLong (2.0 Movadeg)

D.1 (2.0 pt)

Tmin/ro =
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Theoretical problems: solutions. Language: English

T3: Scaling laws (8 pts)

Note: A correct numerical answer provided with at least
two significant figures receives full marks. Inappropri-
ate use of equality will lead to a penalty of 0.1 pts for each
part of the question.

Task A: Spaghetti (2 pts)

This is section 2.2.2 (Statics) of the syllabus.
Consider only the left half of the spaghetti straw.

Torque balance at its right endpoint implies that the
torque applied to its right endpoint must balance out the
torque due to gravity: 7 oc ml oc d/2. This torque arises
from the gradient in the horizontal stress. If the typical
horizontal stress is o, then the typical force is F o« od?,
so the torque is 7 oc F'd < 0d®. Hence, we obtain

od® x &?1? = 1« Vd,

SO

d/
I = El =+/10-50cm = 158 cm.

Marking scheme:

T o d?1? 0.4 pts
F x od? 0.5 pts
T x od? 0.5 pts
I xVd 0.4 pts

Answer: 158cm | 0.2 pts

Task B: Sand castle (2 pts)

This is Section 2.2.2 (statics) and 2.2.5 (hydrodynamics) of
the syllabus

Due to wetting of the surfaces of the sand grains and
its large surface tension water acts like a glue for sand.
This means that all the grains need to be bound together
by air-water interface. To achieve this there needs to be
neither too little nor too much water: if there is too little
water, most of the grains are dry with no surface ten-
sion binding them, and if there is too much water, al-
most all the grains are immersed into water, and again,
there is no surface tension binding the grains. So, the
overall strength of the buildings from wet sand depends
on the water content; we assume that for the both types
of sand, the water content is optimal, and the shape of
the grains is statistically similar. Let us consider two
neighbouring grains connected by a water meniscus —
or “neck”, as we shall be referring to it henceforth. Note
that the “neck” may extend perpendicularly to the fig-
ure plane far away; so, more specifically, what the word
“neck” will refer to is that part of the water-air interface
for which the closest two grains are the ones under con-
sideration.

There are two processes binding the sand grains to-
gether. The first one is the force due to the surface ten-
sion, I, = ~+I, where v denotes the surface tension coef-
ficient, and [ — the perimeter of the “neck”; with [ ~ r,,
where r, denotes the length scale of a single grain, we ob-
tain F; ~ yr. The second one is the pressure force caused
by the negative capillary pressure in the neck, £}, = ApA,
where A is the cross-sectional area of the “neck”, and
Ap ~ v/r. With A ~ r2 we obtain F; ~ «r. Thus, the both
components are of the same order of magnitude and us-
ing either of them will lead to the correct scaling law.
These forces press the grains against each other, hence
the normal force and friction force between the grains is
also on the order of F; and F,,.

Solution 1:

Based on what has been said above, the typical force
needed to delocate a grain of sand is F;, « r,. The force
needed to delocate an entire horizontal layer of sand is
then «x F,N;, where N; ~ A/rg is the number of grains in
alayer. The force of cylinder destruction F thus satisfies

F o FgNyocrg[re =7, o ngl/g,

Fpy = (1/10)"Y3 . F., = 21.5N.

Marking scheme:

a) F; xrgand F, o< ry 0.5 pts

one of the two missing | -0.1 pts
b) Fy x r, 0.5 pts
C) Fx FyN, 0.5 pts
d) Focr,! 0.3 pts
Answer: 21.5N 0.2 pts

Notes: If the student only qualitatively explains the
mechanism by which the grains of sand are held to-
gether, a maximum of 0.5 pts are given. Points bh)-c) are
given only if derived from a).

Solution 2:

We have seen above that grains to one side of a ficti-
tious surface exert force per cross-sectional area on the
order of magnitude as the capillary pressure Ap ~ ~/rq.
In order to get the grains moving, a pressure of the same
order of magnitude needs to be applied externally. For
both cylinders, the surface area where the force is ap-
plied is the same, hence the force scales as the capillary
pressure, F o 1/r, oc V7173,

Marking scheme:

The applied pressure must be ~ Ap 0.6 pts
The curvature radius of the interface is ~ r, | 0.6 pts
Capillary pressure Ap ~ v/r 0.6 pts
Answer: 21.5N 0.2 pts

Note: If the contribution of surface tension is neglected,
0.1 pts are subtracted.

Solution 3:

The compression force serves to break the surface ten-
sion bonds between sand grains.

Consider the energy E required to push a single layer
of sand into the layer beneath it. £ o< F'ry, where F is the
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force required and r, is the typical height of a layer (i.e.,
the typical length scale of a grain).

On the other hand, £ = vAA, where ~ is the surface
tension of water and A A is the total amount by which
the surface of the water in the layer stretches before all
the “water bonds” between the sand grains are broken.

Here, AAis proportional to the area A of alayer and is
thus a constant between the two cylinders. Hence, F
Fryis a constant between the two cylinders, i.e., F oc ;.

Marking scheme:

E o« Fry 0.5 pts
Ex~yAA 0.5 pts
AAx A 0.5 pts
Focr)! 0.3 pts

Answer: 21.5N | 0.2 pts

Note: If the student only qualitatively explains the mech-
anism by which the grains of sand are held together, a
maximum of 0.5 pts are given.

Solution 4:

First of all, the force F should be proportional to the
cylinder’s base area A. The force required to destroy a
cylinder with base area A = nA, is equal to the force
required to destroy n cylinders each with base area A,.
As aresult, F x n x A.

In addition, F depends on the grain’s length scale r,
and the water’s surface tension . Dimensional analysis
thus gives

F x A x rg_l
Tg
for fixed A and ~.
Marking scheme:
FxA 0.6 pts
F=F(A,rg,7) | 0.6 pts
Focdy 0.6 pts

Answer: 215N | 0.2 pts

Note: If the student only qualitatively explains the mech-
anism by which the grains of sand are held together, a
maximum of 0.5 pts are given.

Task C: Interstellar travel (2 pts)

This is Section 2.5 (Relativity) of the syllabus

Let T = 50yrs be the astronauts’ total travel time.
For maximal travel distance, the spaceship accelerates
at constant proper acceleration a = g for proper time
T /4, during which a distance of d is traveled. The space-
ship then decelerates at a« = —g for proper time 7/4 to
come to a rest, during which another distance d is trav-
eled. The spaceship then returns to Earth using the same
procedure.

Notes: Formula relating acceleration to proper ac-
celeration is not considered as a basic SR formula and
therefore if the formula is written without motivation,
0.2 pts are subtracted.

Solution 0: (incorrect)

If we ignore relativity, then d « 3gt* o< g, which gives
an answer of 1.5.

Marking scheme:

d o gt?
Answer: 1.5

0.2 pts
0.1 pts

Solution 1:

One way to approach the problem is to notice that con-
stant acceleration in spaceship’s frame means a constant
force in the Earth’s frame. This follows directly from the
Lorentz transform for the electromagnetic field, more
specifically from the fact that when going to a frame
moving parallel to the z-axis, the z-directional electric
field E, remains unchanged. Hence, on the one hand,
the force F,, = eF, exerted on an accelerating particle of
rest mass mo and carrying a charge e remains constant
in the lab frame. On the other hand, the acceleration of
that particle in an inertial frame moving with velocity v,
where v denotes the particle’s velocity at a certain mo-
ment of time ¢, is always equal to eF, /mg, regardless of
the value of ¢, i.e. constant in time.

Those who are not familiar with the Lorenz transform
for electromagnetic field can derive the above described
property from the Lorenz transform for momentum and
coordinates. We use again (i) the lab frame, and (ii) an in-
ertial frame moving with velocity v, where v denotes the
spaceship’s velocity at a certain moment of time which
will be used as the origin, ¢ = ¢ = 0; let primes denote
quantities in the second frame. Assuming a very short
time period ¢, we can neglect terms quadratic in time so
that in the frame (ii), the momentum, coordinate and the
relativistic mass can be expressed as p’ = F't/, 2/ = 0,
m’ = my, respectively; applying the Lorenz transform
yields t = ¢’ and p = y(F't' + mgv) = tF’ + ymgov. On the
other hand, in the frame (i), p = ymov + F't; comparing
this with the previous result yields F = F’.

It appears that in either case, the spaceship’s speed will
reach almost ¢ much faster than the travel time. Hence,
using for convenience the system of units where ¢ = 1,
the travel distance z equals with a very good precision
the travel time ¢, x = ¢.

What is left to do is to relate ¢ to the proper time 7,

dt
_ a2t dtL;
0 V/mé + mig?t?

upon integration we obtain

dr

7 = asinh(gt)/g = = =~ t = sinh(g7)/g ~ exp(g7)/2g.
So we conclude that the ratio of the travel distances is

d2 g 2
= — 1.5gT7 — = - T/8) ~ 480.
§, = 15, SXP(L5gT — g7) = S exp(gT/8)

Note that an exact relationship between z and ¢ could
have been obtained by expressing the energy of the
spaceship as m = mgy + mpgx, and the momentum as
p = mogt. Then the Lorenz invariant (mg + mogz)? —
(mogt)? = m2 yields z(x +2/g) = t* = sinh®(g7) /g2, hence
x = [cosh(gT) — 1]/g.
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F, is Lorentz invariant | 0.4 pts
SR 0.4 pts
dr = % 0.2 pts
vt =mg/m 0.2 pts
m = \/mg + p? 0.2 pts
p = mogt 0.2 pts
t = sinh(gr)/g 0.2 pts
Answer: 480 0.2 pts

Remark: ifintegration boundaries for distance or proper
time are wrong by a factor of 0.5, 2, 4, etc., -0.1 pts.

Solution 2:

Let w be the rapidity of the spaceship, defined as w =
tanh ™' (3), where 3 is the spaceship’s velocity. Then 3 =
tanh w, the Lorentz factor v = cosh w, and its momentum
p = mg Sinh w.

As shown by Solution 1, a spaceship experiencing a
constant proper acceleration g experiences a constant
three-force

dp dw dw g
F = = — =mgCoshw—— = — = .

g =gy T MR gy dt ~ coshw
Meanwhile, time dilation relates ¢ to the spaceship’s

proper time 7 as

ﬁ— = cosh = diw—diwg_

dr TN T a4 T drdr
Integrating yields w = g7. Recalling that dt = vdr, we get
the following as the total distance traveled over a quar-
ter of the spaceship’s trip:

T/4 T/4
d= Bydr = / tanh w coshwdr
0

0

T/4 1
= / sinhgrdr = E(cosh(gT/zL) —1).
0

The answer is thus

g1 cosh(gaT'/4c) —1 10 cosh(19.72) — 1
g2 cosh(g;T/4c) —1 15 cosh(13.15) — 1
2

~ g619.72713.15 = 480.
Marking scheme:
gt (mo Slnh w) = mog 0.5 pts
dilzitj = coshw 0.1 pts
& =coshw 0.4 pts
W=y 0.1 pts
w=gr 0.1 pts
g T/4 ﬁfy dr 0.3 ptS
4= fOT /* tanhw coshwdr | 0.2 pts
4= %(cosh(gT/él) -1) 0.1 pts
Answer: 480 0.2 pts

Remark: ifintegration boundaries for distance or proper
time are wrong by a factor of 0.5, 2, 4, etc., -0.1 pts.

Solution 3: The problem can be also solved by using the
trick introduced in 1905 by Henri Poincaré [Poincaré,
M.H. Sur la dynamique de I’ électron. Rend. Circ. Matem.

Palermo 21, 129-175 (1906)] of depicting things in x — it-
diagram. The benefit of using this diagram is that the
relativistic invariant 22 — ¢? transforms into Euclidean
squared distance 22 + #? with § = it. This means that
in that diagram, we can use the knowledge of Euclidean
geometry. In particular, the Lorentz transform is now
the rotation of the Euclidean z — it-space by an angle
o = arctan . Now, consider the trajectory of the space
ship; its infinitesimal arc length is icdr, where dr is the
differential of the proper time, and the infintesimal rota-
tion angle of its tangent is do = arctan(dv/ic) = dv/ic =
gdr/ic. Therefore, the curvature radius R = icdr/da =
—c?/g is constant, i.e. the trajectory is a circle of radius
R. Now we can easily relate the travel distance « to the
arc length icr:

icr c?
lR(lCOSO{)R(lCOSR) = (cosh7—1>

Marking scheme:

R = const in x-ict-diag. 0.5 pts
R=—-¢%/c 0.5 pts

missing ‘-’ -0.2 pts

partial credit for R = ¥2 | 0.2 pts
x = R(1 — cos«) 0.5 pts
% (cosh &= — 1) 0.3 pts
Answer: 480 0.2 pts

Solution 4: The problem can be solved by using the ve-
locity addition formula. Let v = Sc be the speed of the
spaceship in the lab frame, ¢ be the lab time, and + —
the proper time. Also, we consider a frame which moves
with constant speed » in which the spaceship accelerates
from rest:

5+ng gdr
BJFdB:W*ﬂ 0(1*5)
Thus, 4 4
B gdr g7t
72~ = Bftanh(?).

From relativistic time dilation formula we obtain
d
T —cosh(Z)ar

i ‘

so that the travel distance

T/4 2
d_ /vdt = c/ sinh(ﬂ)dr _— {cosh (QT) - 1}
2 0 c g 4c

dt =

a)pf+dg= 1+6Jd7 0.3 pts
b) 12%2 = % 0.2 ptS
¢) g = tanh(<") 0.2 pts
d) dt = fzﬁz 0.3 pts
e) dt = cosh(Zr)dr 0.2 pts
f) 4 = [odt 0.2 pts
g ¢ =c[I*sinh()dr | 0.2 pts
h) ¢ ﬁ [cosh (% - 1} 0.2 pts
i) Answer 480 0.2 pts
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Remark: if integration in f) is done over proper time,
no points are given for f). If integration boundaries for
distance or proper time are wrong by a factor of 0.5, 2, 4,
etc., -0.1 pts.

Task D: That sinking feeling (2 pts)

(This is Sections 2.2.5 (Hydrodynamics) and 2.4.1 (Single
oscillator) of the syllabus

Solution 1: The oscillation of the half-sunk sphere is
driven by gravity. The non-damped angular frequency
depends on the gravitational acceleration and a charac-
teristic length, which is, for a sphere, its radius r, so

wo X \/g/r

is the only dimensionally correct possible function.

The drag force F; depends on the sphere’s speed v
[m/s], its size r [m], and viscosity of the liquid » [Pa-s].
Dimensional analysis thus gives F; « nrv. The damping

factor is thus

F
B=5 ol

2mv  m’

Since the mass scales with 3, we have

1
B o ﬁ
Then the relation
2 w?
[iz =l-—
wo “o
scales as
g1
P =
w2 T3

Oscillations only occur if 8/wg < 1, so solve

T = Y1-(099)2 =0.271

To
Notes:

1. To obtain wy « 1/4/r without dimensional analysis,
note that a small displacement y changes the sub-
merged volume of the ball by AV « r?y, so the
change in buoyant force ' « r2y, which gives w, =

N NGIGEN

2. To obtain F; « nrv without dimensional analysis,
note that the typical length scale / in the variations
in the velocity field of the water is proportional to .
Thus, the viscous shear o « nv/l « nv/r. The total
drag force is thus F; ~ Ao « nrv, where A is ball’s
area of contact with the water.

3. Alternatively, to obtain F; o« nrv, make use of the
Stokes drag relation F; = 6rnKrv, where K is a di-
mensionless constant that takes into account that
the ball is not in infinite homogeneous fluid.

Marking scheme:

a) wo x \/g/r 0.4 pts
stated without justification -0.2 pts
effective mass oc 3 0.2 pts

just the mass of the ball considered | -0.1 pts
effective returning force oc r2 0.1 pts
wo X \/g/r 0.1 pts

b) Fy < nrv 0.6 pts
no justification -0.3 pts
Stokes without constant K -0.1 pts

c) o 1/r? 0.3 pts

d)g—zzl—i—g 0.4 pts

e) 5o & 0.2 pts

f) Answer: 0.271 0.1 pts

Solution 2: The oscillation of the half-sunk sphere is
driven by the change in buoyancy force, which is pro-
portional to the change in displaced water volume. Thus,
the restoring force F,. « r%x, where z is the displacement
of the sphere.

As discussed in Solution 1, the drag force Fj; o« rv = ri.
The effective mass of the oscillation m o 3. This leads
to the equation of motion

k1T2f + k’zI + ]{337"1’ = 0,

where k;, k; and ks are constant. In the case with no
viscous drag, k> = 0, the motion is at frequency

_ ks
Wy = kl’l“.

With viscous drag, we can get the frequency w by sub-
stituting trial solution » = ¢** and using w = Ima. This

leads to
k‘2
_ 2 _ 2
“= \/ “o 4k3rd’

2 2 k% 2 k%
w2 (1- =2 ) =2 (1- .
W T % < 4k%r4w§> “o ( 4k:1k:3r3)

=0, so

Atr =r,n, w

k2 .
2 = Tfniru
4]€1 k?g

rd.
w=wd -,
To

giving #zin = 0.271.

and

Marking scheme:

a) effective mass o r* 0.2 pts
just the mass of the ball considered | -0.1 pts
b) effective returning force o< 2 0.1 pts
©) wo ox /1/r 0.1 pts
d) Fy x rv 0.6 pts
no justification -0.3 pts
Stokes without constant K -0.1 pts
e) k’lT’Qi —+ kgl’ + kgT’I =0 0.3 ptS
f) w in terms of r and wy 0.6 pts
if not expressed in terms of wy -0.3 pts
g) Answer: 0.271 0.1 pts






